Tunable liquid crystal core refractive index sensor based on surface plasmon resonance in gold nanofilm coated photonic crystal fiber

被引:8
|
作者
Fan, Zhenkai [1 ]
Chu, Shichao [1 ]
Qin, Jianye [1 ]
Zhang, Yinping [1 ]
Liu, Haishan [1 ]
机构
[1] Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China
关键词
TEMPERATURE SENSOR; BIOSENSOR;
D O I
10.1364/AO.450542
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose, to the best of our knowledge, a novel kind of tunable liquid crystal core refractive index (RI) sensor based on photonic crystal fiber (PCF) covered with a nanoring gold film. The finite element method is used to discuss and analyze the sensing performance of the RI sensor. Gold is used as the excitation material for surface plasmon resonance, and a gold nanoring is embedded around the first cladding of the PCF. The liquid analytes penetrate the outermost layer of the cladding, and the central hole is filled with liquid crystal E7. Complete coupling and incomplete coupling are excited as the analyte RI increases, and the resonance strength of complete coupling is stronger than that of incomplete coupling. It can be proved by calculation that at different wavelengths, resonant coupling of fifth-order and sixth-order surface plasmon polaritons is obtained. The RI of liquid analytes ranges from 1.405 to 1.445. The diameters of the liquid crystal cores are 0.2, 0.4, 0.6, and 0.8 mu m; their average sensitivities are 10700, 10566, 10167, and 9166 nm/RIU; and the linear fitting constants are 0.98025, 0.97387, 0.96597, and 0.95507, respectively. In short, the RI sensor has the advantages of tunability, wide range, and high sensitivity, and is expected to be applied in various fields. (C) 2022 Optica Publishing Group
引用
收藏
页码:2675 / 2682
页数:8
相关论文
共 50 条
  • [31] Externally Gold Coated Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance
    Shova, R., I
    Sunny, S. M. A. S.
    Badrudduza, A. S. M.
    Hossain, S.
    Ahmed, T.
    PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020), 2020, : 340 - 343
  • [32] Refractive Index and Temperature Sensor of Micro-groove Photonic Crystal Fiber Based on Surface Plasmon Resonance
    Zhiyong Yin
    Xili Jing
    Heng Zhang
    Plasmonics, 2022, 17 : 1731 - 1741
  • [33] High Sensitivity and Wide Range Refractive Index Sensor Based on Surface Plasmon Resonance Photonic Crystal Fiber
    Wang, Fengmin
    Wei, Yong
    Han, Yanhong
    SENSORS, 2023, 23 (14)
  • [34] Highly sensitive photonic crystal fiber sensor based on surface plasmon resonance for low refractive index detection
    Yang, Youpeng
    Qin, Yafei
    Wang, Dong
    Lu, Xinyu
    Zeng, Yu
    OPTICAL ENGINEERING, 2021, 60 (04)
  • [35] Surface plasmon resonance refractive index sensor based on D-type ZBLAN photonic crystal fiber
    Jin, Zhehao
    Guo, Ying
    Yuan, Hengyi
    Guo, Pengxiao
    Zhang, Lei
    Li, Shuguang
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [36] A Surface Plasmon Resonance-Based Photonic Crystal Fiber Sensor for Simultaneously Measuring the Refractive Index and Temperature
    Zhang, Jingao
    Yuan, Jinhui
    Qu, Yuwei
    Qiu, Shi
    Mei, Chao
    Zhou, Xian
    Yan, Binbin
    Wu, Qiang
    Wang, Kuiru
    Sang, Xinzhu
    Yu, Chongxiu
    POLYMERS, 2022, 14 (18)
  • [37] Refractive Index and Temperature Sensor of Micro-groove Photonic Crystal Fiber Based on Surface Plasmon Resonance
    Yin, Zhiyong
    Jing, Xili
    Zhang, Heng
    PLASMONICS, 2022, 17 (04) : 1731 - 1741
  • [38] Refractive index sensor with extensive detection range using photonic crystal fiber based on surface plasmon resonance
    Kumari, Sindhu
    Prajapati, Yogendra Kumar
    JOURNAL OF OPTICS-INDIA, 2024,
  • [39] A novel ultra-low refractive index photonic crystal fiber sensor based on surface plasmon resonance
    Guo, Xiaowan
    Li, Chaoyang
    Cong, Jingyu
    OPTIK, 2022, 271
  • [40] Surface plasmon resonance sensor based on the dual core D-shape photonic crystal fiber for refractive index detection in liquids
    Lv, Jingwei
    Zhu, Meijun
    Yang, Lin
    Hu, Chunjie
    Yi, Zao
    Wang, Jianxin
    Song, Xinping
    Wang, Debao
    Chu, Paul K.
    Liu, Chao
    OPTICAL ENGINEERING, 2022, 61 (08)