Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes

被引:64
|
作者
Barbier, Jean [1 ]
Krzakala, Florent [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Fac Informat & Commun, Lab Theorie Commun, CH-1015 Lausanne, Switzerland
[2] UPMC, Lab Phys Stat, Ecole Normale Super,CNRS, Dept Phys,PSL Reseach Univ,Sorbonne Univ,UMR 8550, Paris, France
基金
欧洲研究理事会;
关键词
Sparse superposition codes; error-correcting codes; additive white Gaussian noise channel; approximate message-passing; spatial coupling; power allocation; compressed sensing; capacity achieving; state evolution; replica analysis; fast Hadamard operator; MODEL;
D O I
10.1109/TIT.2017.2713833
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the approximate message-passing decoder for sparse superposition coding on the additive white Gaussian noise channel and extend our preliminary work. We use heuristic statistical-physics-based tools, such as the cavity and the replica methods, for the statistical analysis of the scheme. While superposition codes asymptotically reach the Shannon capacity, we show that our iterative decoder is limited by a phase transition similar to the one that happens in low density parity check codes. We consider two solutions to this problem, that both allow to reach the Shannon capacity: 1) a power allocation strategy and 2) the use of spatial coupling, a novelty for these codes that appears to be promising. We present, in particular, simulations, suggesting that spatial coupling is more robust and allows for better reconstruction at finite code lengths. Finally, we show empirically that the use of a fast Hadamard-based operator allows for an efficient reconstruction, both in terms of computational time and memory, and the ability to deal with very large messages.
引用
收藏
页码:4894 / 4927
页数:34
相关论文
共 50 条
  • [31] Scampi: a robust approximate message-passing framework for compressive imaging
    Barbier, Jean
    Tramel, Eric W.
    Krzakala, Florent
    [J]. INTERNATIONAL MEETING ON HIGH-DIMENSIONAL DATA-DRIVEN SCIENCE (HD3-2015), 2016, 699
  • [32] Fast convergence to an approximate solution by message-passing for complex optimizations
    Hayashi, Yukio
    [J]. IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2024, 15 (02): : 485 - 500
  • [33] Communication complexity of approximate maximum matching in the message-passing model
    Huang, Zengfeng
    Radunovic, Bozidar
    Vojnovic, Milan
    Zhang, Qin
    [J]. DISTRIBUTED COMPUTING, 2020, 33 (06) : 515 - 531
  • [35] Message-passing for inference and optimization of real variables on sparse graphs
    Wong, K. Y. Michael
    Yeung, C. H.
    Saad, David
    [J]. NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 754 - 763
  • [36] Performance of LDPC codes under noisy message-passing decoding
    Varshney, Lav R.
    [J]. 2007 IEEE INFORMATION THEORY WORKSHOP, VOLS 1 AND 2, 2007, : 178 - 183
  • [37] Stabilizer Inactivation for Message-Passing Decoding of Quantum LDPC Codes
    Du Crest, Julien
    Mhalla, Mehdi
    Savin, Valentin
    [J]. 2022 IEEE INFORMATION THEORY WORKSHOP (ITW), 2022, : 488 - 493
  • [38] Design of Nonbinary LDPC Codes Based on Message-Passing Algorithms
    Cho, Sunghye
    Cheun, Kyungwhoon
    Yang, Kyeongcheol
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (11) : 5028 - 5040
  • [39] A Heuristic Approach for the Automatic Insertion of Checkpoints in Message-Passing Codes
    Rodriguez, Gabriel
    Martin, Maria J.
    Gonzalez, Patricia
    Tourino, Juan
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2009, 15 (14) : 2894 - 2911
  • [40] The Effect of Cycles on Binary Message-Passing Decoding of LDPC Codes
    Lechner, Gottfried
    [J]. 2010 AUSTRALIAN COMMUNICATIONS THEORY WORKSHOP, 2010, : 43 - 47