On the finite temperature formalism in integrable quantum field theories

被引:24
|
作者
Mussardo, G
机构
[1] Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
来源
关键词
D O I
10.1088/0305-4470/34/36/319
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two different theoretical formulations of the finite temperature effects have been recently proposed for integrable field theories. In order to decide which of them is the correct one, we perform for a particular model an explicit check of their predictions for the one-point function of the trace of the stress-energy tensor, a quantity which can be independently determined by the thermodynamical Bethe ansatz.
引用
收藏
页码:7399 / 7410
页数:12
相关论文
共 50 条
  • [41] FEATURES OF FINITE QUANTUM-FIELD THEORIES
    BOHM, M
    DENNER, A
    [J]. NUCLEAR PHYSICS B, 1987, 282 (01) : 206 - 234
  • [42] BOUNDARY ENERGY AND BOUNDARY STATES IN INTEGRABLE QUANTUM-FIELD THEORIES
    LECLAIR, A
    MUSSARDO, G
    SALEUR, H
    SKORIK, S
    [J]. NUCLEAR PHYSICS B, 1995, 453 (03) : 581 - 618
  • [43] THE QUANTUM INVERSE METHOD AND THE MONODROMY MATRIX IN INTEGRABLE FIELD-THEORIES
    DEVEGA, H
    [J]. PHYSICA D, 1984, 11 (03): : 406 - 406
  • [44] Zamolodchikov-Faddeev algebra and quantum quenches in integrable field theories
    Sotiriadis, S.
    Fioretto, D.
    Mussardo, G.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [45] Towards an Explicit Construction of Local Observables in Integrable Quantum Field Theories
    Henning Bostelmann
    Daniela Cadamuro
    [J]. Annales Henri Poincaré, 2019, 20 : 3889 - 3926
  • [46] Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories
    Sabina Alazzawi
    Gandalf Lechner
    [J]. Communications in Mathematical Physics, 2017, 354 : 913 - 956
  • [47] Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories
    Alazzawi, Sabina
    Lechner, Gandalf
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (03) : 913 - 956
  • [48] Generalised hydrodynamics of T(sic)-deformed integrable quantum field theories
    Travaglino, Riccardo
    Mazzoni, Michele
    Castro-Alvaredo, Olalla A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):
  • [49] A QUANTUM GROUP-STRUCTURE IN INTEGRABLE CONFORMAL FIELD-THEORIES
    SMIT, DJ
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (01) : 1 - 37
  • [50] Towards an Explicit Construction of Local Observables in Integrable Quantum Field Theories
    Bostelmann, Henning
    Cadamuro, Daniela
    [J]. ANNALES HENRI POINCARE, 2019, 20 (12): : 3889 - 3926