Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories

被引:13
|
作者
Alazzawi, Sabina [1 ]
Lechner, Gandalf [2 ]
机构
[1] Tech Univ Munich, Zentrum Math, Boltzmannstr 3, D-85748 Garching, Germany
[2] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, S Glam, Wales
关键词
S-MATRIX; GENERALIZED STATISTICS; MODULAR LOCALIZATION; DUALITY CONDITION; SINE-GORDON; CONSTRUCTION; NUCLEARITY; DIMENSIONS; PROGRAM; MODELS;
D O I
10.1007/s00220-017-2891-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a solution method for the inverse scattering problem for integrable two-dimensional relativistic quantum field theories, specified in terms of a given massive single particle spectrum and a factorizing S-matrix. An arbitrary number of massive particles transforming under an arbitrary compact global gauge group is allowed, thereby generalizing previous constructions of scalar theories. The two-particle S-matrix S is assumed to be an analytic solution of the Yang-Baxter equation with standard properties, including unitarity, TCP invariance, and crossing symmetry. Using methods from operator algebras and complex analysis, we identify sufficient criteria on S that imply the solution of the inverse scattering problem. These conditions are shown to be satisfied in particular by so-called diagonal S-matrices, but presumably also in other cases such as the O(N)-invariant nonlinear -models.
引用
收藏
页码:913 / 956
页数:44
相关论文
共 50 条
  • [1] Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories
    Sabina Alazzawi
    Gandalf Lechner
    [J]. Communications in Mathematical Physics, 2017, 354 : 913 - 956
  • [2] Characterization of Local Observables in Integrable Quantum Field Theories
    Bostelmann, Henning
    Cadamuro, Daniela
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (03) : 1199 - 1240
  • [3] Characterization of Local Observables in Integrable Quantum Field Theories
    Henning Bostelmann
    Daniela Cadamuro
    [J]. Communications in Mathematical Physics, 2015, 337 : 1199 - 1240
  • [4] THE QUANTUM INVERSE METHOD AND THE MONODROMY MATRIX IN INTEGRABLE FIELD-THEORIES
    DEVEGA, H
    [J]. PHYSICA D, 1984, 11 (03): : 406 - 406
  • [5] Expectation values of local fields in integrable quantum field theories
    Zamolodchikov, AB
    [J]. XIITH INTERNATIONAL CONGRESS OF MATHEMATICAL PHYSICS (ICMP '97), 1999, : 240 - 248
  • [6] Towards an Explicit Construction of Local Observables in Integrable Quantum Field Theories
    Henning Bostelmann
    Daniela Cadamuro
    [J]. Annales Henri Poincaré, 2019, 20 : 3889 - 3926
  • [7] Towards an Explicit Construction of Local Observables in Integrable Quantum Field Theories
    Bostelmann, Henning
    Cadamuro, Daniela
    [J]. ANNALES HENRI POINCARE, 2019, 20 (12): : 3889 - 3926
  • [8] Quantum quenches in integrable field theories
    Fioretto, Davide
    Mussardo, Giuseppe
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [9] On space of integrable quantum field theories
    Smirnova, F. A.
    Zamolodchikov, A. B.
    [J]. NUCLEAR PHYSICS B, 2017, 915 : 363 - 383
  • [10] QUANTUM GROUPS (YBZF ALGEBRAS) AND INTEGRABLE THEORIES - AN OVERVIEW
    DEVEGA, HJ
    [J]. DIFFERENTIAL GEOMETRICAL METHODS IN THEORETICAL PHYSICS, 1988, 250 : 187 - 210