Homogenization and boundary layers in domains of finite type

被引:5
|
作者
Zhuge, Jinping [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Convergence rates; finite type; homogenization; oscillating Dirichlet problem; FOURIER-ANALYSIS; PERIODIC HOMOGENIZATION;
D O I
10.1080/03605302.2018.1446160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the homogenization of Dirichlet problem of elliptic systems in a bounded, smooth domain of finite type. Both the coecients of the elliptic operator and the Dirichlet boundary data are assumed to be periodic and rapidly oscillating. We prove the theorem of homogenization and obtain an algebraic rate of convergence that depends explicitly on dimension and the type of the domain.
引用
收藏
页码:549 / 584
页数:36
相关论文
共 50 条
  • [1] Homogenization and boundary layers
    Gerard-Varet, David
    Masmoudi, Nader
    ACTA MATHEMATICA, 2012, 209 (01) : 133 - 178
  • [2] Boundary homogenization in domains with randomly oscillating boundary
    Amirat, Youcef
    Bodart, Olivier
    Chechkin, Gregory A.
    Piatnitski, Andrey L.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (01) : 1 - 23
  • [3] Spectral boundary homogenization in domains with oscillating boundaries
    Amirat, Youcef
    Chechkin, Gregory A.
    Gadyl'shin, Rustem R.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (06) : 4492 - 4499
  • [4] HOMOGENIZATION IN DOMAINS RANDOMLY PERFORATED ALONG THE BOUNDARY
    Chechkin, Gregory A.
    Chechkina, Tatiana P.
    D'Apice, Ciro
    De Maio, Umberto
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (04): : 713 - 730
  • [5] Carleson measures on convex domains with smooth boundary of finite type
    Li, Haichou
    Liu, Jinsong
    Wang, Hongyu
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (02) : 694 - 706
  • [6] Boundary Layers in Periodic Homogenization of Neumann Problems
    Shen, Zhongwei
    Zhuge, Jinping
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2018, 71 (11) : 2163 - 2219
  • [7] A result on the decay of the boundary layers in the homogenization theory
    Neuss-Radu, M
    ASYMPTOTIC ANALYSIS, 2000, 23 (3-4) : 313 - 328
  • [8] On Homogenization of Problems in Domains of the “Infusorium” Type
    G. A. Chechkin
    T. P. Chechkina
    Journal of Mathematical Sciences, 2004, 120 (3) : 1470 - 1482
  • [9] Quantitative Analysis of Boundary Layers in Periodic Homogenization
    Scott Armstrong
    Tuomo Kuusi
    Jean-Christophe Mourrat
    Christophe Prange
    Archive for Rational Mechanics and Analysis, 2017, 226 : 695 - 741
  • [10] Quantitative Analysis of Boundary Layers in Periodic Homogenization
    Armstrong, Scott
    Kuusi, Tuomo
    Mourrat, Jean-Christophe
    Prange, Christophe
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 226 (02) : 695 - 741