Quantitative Analysis of Boundary Layers in Periodic Homogenization

被引:21
|
作者
Armstrong, Scott [1 ]
Kuusi, Tuomo [2 ]
Mourrat, Jean-Christophe [3 ]
Prange, Christophe [4 ]
机构
[1] PSL Res Univ, Univ Paris Dauphine, CEREMADE, CNRS,UMR 7534, F-75016 Paris, France
[2] Aalto Univ, Dept Math & Syst Anal, Espoo, Finland
[3] Ecole Normale Super Lyon, CNRS, UMPA, UMR 5669, Lyon, France
[4] Univ Bordeaux, CNRS, UMR 5251, IMB, Bordeaux, France
基金
芬兰科学院;
关键词
FOURIER-ANALYSIS; CORRECTORS; DOMAINS; GREEN;
D O I
10.1007/s00205-017-1142-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition.
引用
收藏
页码:695 / 741
页数:47
相关论文
共 50 条
  • [1] Quantitative Analysis of Boundary Layers in Periodic Homogenization
    Scott Armstrong
    Tuomo Kuusi
    Jean-Christophe Mourrat
    Christophe Prange
    Archive for Rational Mechanics and Analysis, 2017, 226 : 695 - 741
  • [2] Boundary Layers in Periodic Homogenization of Neumann Problems
    Shen, Zhongwei
    Zhuge, Jinping
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2018, 71 (11) : 2163 - 2219
  • [3] Homogenization and boundary layers
    Gerard-Varet, David
    Masmoudi, Nader
    ACTA MATHEMATICA, 2012, 209 (01) : 133 - 178
  • [4] ASYMPTOTIC ANALYSIS OF BOUNDARY LAYER CORRECTORS IN PERIODIC HOMOGENIZATION
    Prange, Christophe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) : 345 - 387
  • [5] On the treatments of heterogeneities and periodic boundary conditions for isogeometric homogenization analysis
    Matsubara, Seishiro
    Nishi, Shin-Nosuke
    Terada, Kenjiro
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (11) : 1523 - 1548
  • [6] Homogenization of a Locally Periodic Oscillating Boundary
    S. Aiyappan
    K. Pettersson
    Applied Mathematics & Optimization, 2022, 86
  • [7] Boundary homogenization for periodic arrays of absorbers
    Muratov, Cyrill B.
    Shvartsman, Stanislav Y.
    MULTISCALE MODELING & SIMULATION, 2008, 7 (01): : 44 - 61
  • [8] Boundary layer tails in periodic homogenization
    Allaire, Grégoire
    Amar, Micol
    ESAIM Control, Optimisation and Calculus of Variations, 1999, (04): : 209 - 243
  • [9] Homogenization of a Locally Periodic Oscillating Boundary
    Aiyappan, S.
    Pettersson, K.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 86 (02):
  • [10] Propagating modes of periodic solid layers in an ideal or viscous fluid by homogenization analysis
    Liu, Ying-Hong
    Chang, Chien C.
    Kuo, Chih-Yu
    PHYSICAL REVIEW B, 2008, 78 (05):