Homogenization and boundary layers in domains of finite type

被引:5
|
作者
Zhuge, Jinping [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Convergence rates; finite type; homogenization; oscillating Dirichlet problem; FOURIER-ANALYSIS; PERIODIC HOMOGENIZATION;
D O I
10.1080/03605302.2018.1446160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the homogenization of Dirichlet problem of elliptic systems in a bounded, smooth domain of finite type. Both the coecients of the elliptic operator and the Dirichlet boundary data are assumed to be periodic and rapidly oscillating. We prove the theorem of homogenization and obtain an algebraic rate of convergence that depends explicitly on dimension and the type of the domain.
引用
收藏
页码:549 / 584
页数:36
相关论文
共 50 条
  • [21] Homogenization of elliptic boundary value problems in Lipschitz domains
    Kenig, Carlos E.
    Shen, Zhongwei
    MATHEMATISCHE ANNALEN, 2011, 350 (04) : 867 - 917
  • [22] Homogenization of the Neumann boundary value problem: polygonal domains
    Zhao, Jie
    Wang, Juan
    Zhang, Jianlin
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [23] Homogenization results for elliptic problems in periodically perforated domains with mixed-type boundary conditions
    Capatina, Anca
    Ene, Horia
    Timofte, Claudia
    ASYMPTOTIC ANALYSIS, 2012, 80 (1-2) : 45 - 56
  • [24] Homogenization of the finite-length fibre composite materials by boundary meshless type method
    Murcinkova, Zuzana
    Novak, Pavol
    Kompis, Vladimir
    Zmindak, Milan
    ARCHIVE OF APPLIED MECHANICS, 2018, 88 (05) : 789 - 804
  • [25] Homogenization of the finite-length fibre composite materials by boundary meshless type method
    Zuzana Murčinková
    Pavol Novák
    Vladimír Kompiš
    Milan Žmindák
    Archive of Applied Mechanics, 2018, 88 : 789 - 804
  • [26] HOMOGENIZATION OF BOUNDARY LAYERS IN THE BOLTZMANN-POISSON SYSTEM
    Heitzinger, Clemens
    Morales, Jose A. E.
    MULTISCALE MODELING & SIMULATION, 2021, 19 (01): : 506 - 532
  • [27] Homogenization of a parabolic operator with Signorini boundary conditions in perforated domains
    Beliaev, A
    ASYMPTOTIC ANALYSIS, 2004, 40 (3-4) : 255 - 268
  • [28] The finite mass method on domains with boundary
    Klingler, M
    Leinen, P
    Yserentant, H
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (05): : 1744 - 1759
  • [29] Boundary homogenization in perforated domains for adsorption problems with an advection term
    Brillard, A.
    Gomez, D.
    Lobo, M.
    Perez, E.
    Shaposhnikova, T. A.
    APPLICABLE ANALYSIS, 2016, 95 (07) : 1517 - 1533
  • [30] Homogenization of boundary value problems in perforated domains of nonperiodic structure
    Oleinik, OA
    Shaposhnikova, TA
    DIFFERENTIAL EQUATIONS, 1998, 34 (05) : 647 - 662