Partial Compliance, Effect of Treatment on the Treated and Instrumental Variables

被引:1
|
作者
Forcina, Antonio [1 ]
机构
[1] Dipartimento Econ Finanza & Stat, I-06100 Perugia, Italy
关键词
CAUSAL INFERENCE; PRINCIPAL STRATIFICATION; MEAN MODELS; NONCOMPLIANCE; TRIALS;
D O I
10.1007/978-3-642-13312-1_33
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Under the assumption that treatment assignment has no direct effect on the response, a non parametric probabilistic model of the distribution involving the latent confounder under partial compliance leads to a generalized definition of the effect of treatment on the treated and reveals that the instrumental variable estimand equals a suitable average of such causal effects only when certain restrictions hold. An application to a popular data set concerning reduction of cholesterol level is used as an illustration.
引用
收藏
页码:317 / 324
页数:8
相关论文
共 50 条
  • [1] Instrumental variables and the sign of the average treatment effect
    Machado, Cecilia
    Shaikh, Azeem M.
    Vytlacil, Edward J.
    [J]. JOURNAL OF ECONOMETRICS, 2019, 212 (02) : 522 - 555
  • [2] Partial Identification of the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary Instruments, Treatments, and Outcomes
    Swanson, Sonja A.
    Hernan, Miguel A.
    Miller, Matthew
    Robins, James M.
    Richardson, Thomas S.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) : 933 - 947
  • [3] Inference in Nonparametric Instrumental Variables With Partial Identification
    Santos, Andres
    [J]. ECONOMETRICA, 2012, 80 (01) : 213 - 275
  • [4] The effect of unstable housing on HIV treatment biomarkers: An instrumental variables approach
    Galarraga, Omar
    Rana, Aadia
    Rahman, Momotazur
    Cohen, Mardge
    Adimora, Adaora A.
    Sosanya, Oluwakemi
    Holman, Susan
    Kassaye, Seble
    Milam, Joel
    Cohen, Jennifer
    Golub, Elizabeth T.
    Metsch, Lisa R.
    Kempf, Mirjam-Colette
    [J]. SOCIAL SCIENCE & MEDICINE, 2018, 214 : 70 - 82
  • [5] Instrumental Variables and Heterogeneous Treatment Effects
    Maciejewski, Matthew L.
    Dowd, Bryan E.
    Norton, Edward C.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2022, 327 (12): : 1177 - 1178
  • [6] IDENTIFICATION AND INFERENCE FOR MARGINAL AVERAGE TREATMENT EFFECT ON THE TREATED WITH AN INSTRUMENTAL VARIABLE
    Liu, Lan
    Miao, Wang
    Sun, Baoluo
    Robins, James
    Tchetgen, Eric Tchetgen
    [J]. STATISTICA SINICA, 2020, 30 (03) : 1517 - 1541
  • [7] Instrumental Variables with Unrestricted Heterogeneity and Continuous Treatment
    Kasy, Maximilian
    [J]. REVIEW OF ECONOMIC STUDIES, 2014, 81 (04): : 1614 - 1636
  • [8] Identification of causal effects using instrumental variables in randomized trials with stochastic compliance
    Scosyrev, Emil
    [J]. BIOMETRICAL JOURNAL, 2013, 55 (01) : 97 - 113
  • [9] EFFECT OF SEVERAL VARIABLES ON INSTRUMENTAL FLOUR COLOR
    SKARSAUNE, SK
    SHUEY, WC
    [J]. CEREAL FOODS WORLD, 1975, 20 (06) : 286 - &
  • [10] Identification of the Direction of a Causal Effect by Instrumental Variables
    Kline, Brendan
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2016, 34 (02) : 176 - 184