CDADNet: Context-guided dense attentional dilated network for crowd counting

被引:1
|
作者
Zhu, Aichun [1 ,2 ]
Duan, Guoxiu [1 ]
Zhu, Xiaomei [1 ]
Zhao, Lu [1 ]
Huang, Yaoying [1 ]
Hua, Gang [2 ]
Snoussi, Hichem [3 ]
机构
[1] Nanjing Tech Univ, Sch Comp Sci & Technol, Nanjing, Peoples R China
[2] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou, Jiangsu, Peoples R China
[3] Univ Technol Troyes, ICD LM2S, Troyes, France
基金
中国国家自然科学基金;
关键词
Crowd counting; Density map; Dense dilated; Attention;
D O I
10.1016/j.image.2021.116379
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Crowd counting is a conspicuous task in computer vision owing to scale variations, perspective distortions, and complex backgrounds. Existing research usually adopts the dilated convolution network to enlarge the receptive fields to solve the problem of scale variations. However, these methods easily bring background information into the large receptive fields to generate poor quality density maps. To address this problem, we propose a novel backbone called Context-guided Dense Attentional Dilated Network (CDADNet). CDADNet contains three components: an attentional module, a context-guided module and a dense attentional dilated module. The attentional module is used to provide attention maps which can remove background information, while the context-guided module is proposed to extract multi-scale contextual information. Moreover, the dense attentional dilated module aims to generate high-granularity density maps and the cascaded strategy is used to preserve information from changing scales. To verify the feasibility of our method, we compare it to the existing approaches on five crowd counting datasets (ShanghaiTech (Part_A and Part_B), WorldEXPO'10, UCSD, UCF_CC_50). The comparison results demonstrate that CDADNet is effective and robust for various scenes.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Multi-Scale Guided Attention Network for Crowd Counting
    Li, Pengfei
    Zhang, Min
    Wan, Jian
    Jiang, Ming
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [32] Dense Crowd Counting Network Based on Multi-scale Perception
    Li, Hengchao
    Liu, Xianglian
    Liu, Peng
    Feng, Bin
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2024, 59 (05): : 1176 - 1183
  • [33] Improved Dense Crowd Counting Method based on Residual Neural Network
    Shi J.
    Zhou L.
    Lv G.
    Lin B.
    Journal of Geo-Information Science, 2021, 23 (09): : 1537 - 1547
  • [34] SCLNet: Spatial context learning network for congested crowd counting
    Wang, Shunzhou
    Lu, Yao
    Zhou, Tianfei
    Di, Huijun
    Lu, Lihua
    Zhang, Lin
    NEUROCOMPUTING, 2020, 404 (227-239) : 227 - 239
  • [35] Context-aware pyramid attention network for crowd counting
    Gu, Lingyu
    Pang, Chen
    Zheng, Yanjun
    Lyu, Chen
    Lyu, Lei
    APPLIED INTELLIGENCE, 2022, 52 (06) : 6164 - 6180
  • [36] Context-aware pyramid attention network for crowd counting
    Lingyu Gu
    Chen Pang
    Yanjun Zheng
    Chen Lyu
    Lei Lyu
    Applied Intelligence, 2022, 52 : 6164 - 6180
  • [37] Multi-scale dilated convolution of convolutional neural network for crowd counting
    Yanjie Wang
    Shiyu Hu
    Guodong Wang
    Chenglizhao Chen
    Zhenkuan Pan
    Multimedia Tools and Applications, 2020, 79 : 1057 - 1073
  • [38] Redesigned Skip-Network for Crowd Counting with Dilated Convolution and Backward Connection
    Sooksatra, Sorn
    Kondo, Toshiaki
    Bunnun, Pished
    Yoshitaka, Atsuo
    JOURNAL OF IMAGING, 2020, 6 (05)
  • [39] Multi-scale dilated convolution of feature Fusion Network for Crowd counting
    Donghua Liu
    Guodong Wang
    Guangtao Zhai
    Multimedia Tools and Applications, 2022, 81 : 37939 - 37952
  • [40] Multi-scale dilated convolution of feature Fusion Network for Crowd counting
    Liu, Donghua
    Wang, Guodong
    Zhai, Guangtao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37939 - 37952