Multi-scale dilated convolution of feature Fusion Network for Crowd counting

被引:0
|
作者
Donghua Liu
Guodong Wang
Guangtao Zhai
机构
[1] Qingdao University,College of Computer Science and Technology
[2] Shanghai Jiao Tong University,Institute of Image Communication and Network Engineering
来源
关键词
Crowd counting; Convolution neural network; Dilated convolution; Feature fusion;
D O I
暂无
中图分类号
学科分类号
摘要
Crowd counting has long been a challenging task due to the perspective distortion and variability in head size. The previous methods ignore the multi-scale information in images or simply use convolutions with different kernel sizes to extract multi-scale features, resulting in incomplete multi-scale features extracted. In this paper, we propose a crowd counting model called Multi-scale Dilated Convolution of Feature Fusion Network (MsDFNet) based on a CNN (convolutional neural network). Our MsDFNet is based on the regression method of the density map. The density map is predicted by the parameters learned by CNN to obtain better prediction results. The proposed network mainly includes three components, a CNN to extract low-level features, a multi-scale dilated convolution module and multi-column feature fusion blocks, a density map regression module. Multi-scale dilated convolutions are employed to extract multi-scale high-level features, and the features extracted from different columns are fused. The combination of the multi-scale dilated convolution module and the multi-column feature fusion block can effectively extract more complete multi-scale features and boost the performance of counting small-sized targets. Experiments show that the problem of various head sizes in images can be effectively solved by fusing multi-scale context feature information. We prove the effectiveness of our method on two public datasets (The ShanghaiTech dataset and the UCF_CC_50 dataset). We compare our method with the previous state-of-the-art crowd counting algorithms in terms of MAE (Mean Absolute Error) and MSE (Mean Square Error) and significantly improves the performance, especially in case of various head sizes. On the UCF_CC_50 dataset, our method reduces the MAE index by 28.6 compared with the previous state-of-the-art method. (The lower the MAE, the better the performance).
引用
收藏
页码:37939 / 37952
页数:13
相关论文
共 50 条
  • [1] Multi-scale dilated convolution of feature Fusion Network for Crowd counting
    Liu, Donghua
    Wang, Guodong
    Zhai, Guangtao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37939 - 37952
  • [2] Multi-scale dilated convolution of convolutional neural network for crowd counting
    Yanjie Wang
    Shiyu Hu
    Guodong Wang
    Chenglizhao Chen
    Zhenkuan Pan
    Multimedia Tools and Applications, 2020, 79 : 1057 - 1073
  • [3] Multi-scale dilated convolution of convolutional neural network for crowd counting
    Wang, Yanjie
    Hu, Shiyu
    Wang, Guodong
    Chen, Chenglizhao
    Pan, Zhenkuan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (1-2) : 1057 - 1073
  • [4] Crowd Counting by Multi-Scale Dilated Convolution Networks
    Dong, Jingwei
    Zhao, Ziqi
    Wang, Tongxin
    ELECTRONICS, 2023, 12 (12)
  • [5] Double multi-scale feature fusion network for crowd counting
    Liu, Qian
    Fang, Jiongtao
    Zhong, Yixiong
    Wang, Cunbao
    Qi, Youwei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (34) : 81831 - 81855
  • [6] LEVERAGE MULTI-SCALE DILATED CONVOLUTIONAL NEURAL NETWORK WITH GLOBAL ATTENTION FEATURE FUSION FOR CROWD COUNTING
    Lv, Meilei
    Zhang, Kuncai
    Zheng, Xiaoyun
    Yang, W. E., I
    Lu, Zhe-Ming
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2022, 18 (04): : 1147 - 1162
  • [7] MSFFA: a multi-scale feature fusion and attention mechanism network for crowd counting
    Li, Zhaoxin
    Lu, Shuhua
    Dong, Yishan
    Guo, Jingyuan
    VISUAL COMPUTER, 2023, 39 (03): : 1045 - 1056
  • [8] MSFFA: a multi-scale feature fusion and attention mechanism network for crowd counting
    Zhaoxin Li
    Shuhua Lu
    Yishan Dong
    Jingyuan Guo
    The Visual Computer, 2023, 39 : 1045 - 1056
  • [9] Deep feature network with multi-scale fusion for highly congested crowd counting
    Leilei Yan
    Li Zhang
    Xiaohan Zheng
    Fanzhang Li
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 819 - 835
  • [10] MSFFNet: multi-scale feature fusion network with semantic optimization for crowd counting
    Rohra, Avinash
    Yin, Baoqun
    Bilal, Hazrat
    Kumar, Aakash
    Ali, Munawar
    Li, Yang
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)