The Rotational Dimension of a Graph

被引:9
|
作者
Goering, Frank [1 ]
Helmberg, Christoph [1 ]
Wappler, Markus [1 ]
机构
[1] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
spectral graph theory; semidefinite programming; eigenvalue optimization; embedding; graph partitioning; tree-width; TREE-WIDTH;
D O I
10.1002/jgt.20502
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a connected graph G=(N, E) with node weights s is an element of R-+(N) and nonnegative edge lengths, we study the following embedding problem related to an eigenvalue optimization problem over the second smallest eigenvalue of the (scaled) Laplacian of G: Find v(i)is an element of R-vertical bar N vertical bar, i is an element of N so that distances between adjacent nodes do not exceed prescribed edge lengths, the weighted barycenter of all points is at the origin, and Sigma(i is an element of N)s(i)parallel to v(i)parallel to(2) is maximized. In the case of a two-dimensional optimal solution this corresponds to the equilibrium position of a quickly rotating net consisting of weighted mass points that are linked by massless cables of given lengths. We define the rotational dimension of G to be the minimal dimension k so that for all choices of lengths and weights an optimal solution can be found in R-k and show that this is a minor monotone graph parameter. We give forbidden minor characterizations up to rotational dimension 2 and prove that the rotational dimension is always bounded above by the tree-width of G plus one. (c) 2010 Wiley Periodicals, Inc. J Graph Theory 66: 283-302, 2011
引用
收藏
页码:283 / 302
页数:20
相关论文
共 50 条
  • [31] The threshold strong dimension of a graph
    Benakli, Nadia
    Bong, Novi H.
    Dueck, Shonda
    Eroh, Linda
    Novick, Beth
    Oellermann, Ortrud R.
    DISCRETE MATHEMATICS, 2021, 344 (07)
  • [32] INTERSECTION DIMENSION AND GRAPH INVARIANTS
    Aravind, N. R.
    Subramanian, C. R.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 153 - 166
  • [33] The dimension graph of a commutative ring
    Babaei, S.
    Sevim, E. Sengelen
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (12) : 5005 - 5014
  • [34] The Partition Dimension of Subdivision of a Graph
    Amrullah
    Baskoro, Edy Tri
    Uttunggadewa, Saladin
    Simanjuntak, Rinovia
    PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [35] ON THE BOOLEAN METRIC DIMENSION OF A GRAPH
    MELTER, RA
    TOMESCU, I
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (05): : 407 - 415
  • [36] Graph varieties in high dimension
    Enkosky, Thomas
    Martin, Jeremy L.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2013, 54 (01): : 1 - 12
  • [37] Dimension, Graph and Hypergraph Coloring
    Stefan Felsner
    William T. Trotter
    Order, 2000, 17 : 167 - 177
  • [38] VARIATION OF A FUNCTION, AND GRAPH DIMENSION
    DUBUC, B
    TRICOT, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (13): : 531 - 533
  • [39] The Induced Separation Dimension of a Graph
    Emile Ziedan
    Deepak Rajendraprasad
    Rogers Mathew
    Martin Charles Golumbic
    Jérémie Dusart
    Algorithmica, 2018, 80 : 2834 - 2848
  • [40] The Induced Separation Dimension of a Graph
    Ziedan, Emile
    Rajendraprasad, Deepak
    Mathew, Rogers
    Golumbic, Martin Charles
    Dusart, Jeromie
    ALGORITHMICA, 2018, 80 (10) : 2834 - 2848