The Induced Separation Dimension of a Graph

被引:0
|
作者
Emile Ziedan
Deepak Rajendraprasad
Rogers Mathew
Martin Charles Golumbic
Jérémie Dusart
机构
[1] University of Haifa,Department of Computer Science, The Caesarea Rothschild Institute
[2] Indian Institute of Technology,Department of Computer Science
来源
Algorithmica | 2018年 / 80卷
关键词
Induced separation dimension; Vertex ordering; Acyclic orientation; Asteroidal triples; 05C75; 05C62; 05C85;
D O I
暂无
中图分类号
学科分类号
摘要
A linear ordering of the vertices of a graph Gseparates two edges of G if both the endpoints of one precede both the endpoints of the other in the order. We call two edges {a,b}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{a,b\}$$\end{document} and {c,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{c,d\}$$\end{document} of Gstrongly independent if the set of endpoints {a,b,c,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{a,b,c,d\}$$\end{document} induces a 2K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2K_2$$\end{document} in G. The induced separation dimension of a graph G is the smallest cardinality of a family L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document} of linear orders of V(G) such that every pair of strongly independent edges in G are separated in at least one of the linear orders in L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}. For each k∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in \mathbb {N}$$\end{document}, the family of graphs with induced separation dimension at most k is denoted by ISD(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ISD}}(k)$$\end{document}. In this article, we initiate a study of this new dimensional parameter. The class ISD(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ISD}}(1)$$\end{document} or, equivalently, the family of graphs which can be embedded on a line so that every pair of strongly independent edges are disjoint line segments, is already an interesting case. On the positive side, we give characterizations for chordal graphs in ISD(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ISD}}(1)$$\end{document} which immediately lead to a polynomial time algorithm which determines the induced separation dimension of chordal graphs. On the negative side, we show that the recognition problem for ISD(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ISD}}(1)$$\end{document} is NP-complete for general graphs. Nevertheless, we show that the maximum induced matching problem can be solved efficiently in ISD(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ISD}}(1)$$\end{document}. We then briefly study ISD(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ISD}}(2)$$\end{document} and show that it contains many important graph classes like outerplanar graphs, chordal graphs, circular arc graphs and polygon-circle graphs. Finally, we describe two techniques to construct graphs with large induced separation dimension. The first one is used to show that the maximum induced separation dimension of a graph on n vertices is Θ(lgn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta (\lg n)$$\end{document} and the second one is used to construct AT-free graphs with arbitrarily large induced separation dimension. The second construction is also used to show that, for every k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}, the recognition problem for ISD(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ISD}}(k)$$\end{document} is NP-complete even on AT-free graphs.
引用
收藏
页码:2834 / 2848
页数:14
相关论文
共 50 条
  • [1] The Induced Separation Dimension of a Graph
    Ziedan, Emile
    Rajendraprasad, Deepak
    Mathew, Rogers
    Golumbic, Martin Charles
    Dusart, Jeromie
    ALGORITHMICA, 2018, 80 (10) : 2834 - 2848
  • [2] Induced Separation Dimension
    Ziedan, Emile
    Rajendraprasad, Deepak
    Mathew, Rogers
    Golumbic, Martin Charles
    Dusart, Jeremie
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2016, 2016, 9941 : 121 - 132
  • [3] GRAPHS INDUCED BY A TOPOLOGY AND THE KRULL DIMENSION OF A GRAPH
    Alharbi, Badr
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 39 (02): : 191 - 196
  • [4] ON DIMENSION OF A GRAPH
    ERDOS, P
    HARARY, F
    TUTTE, WT
    MATHEMATIKA, 1965, 12 (24P2) : 118 - &
  • [5] THE DIMENSION OF A GRAPH
    GODSIL, CD
    MCKAY, BD
    QUARTERLY JOURNAL OF MATHEMATICS, 1980, 31 (124): : 423 - 427
  • [6] On the metric dimension of the total graph of a graph
    Sooryanarayana, B.
    Shreedhar, K.
    Narahari, N.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (04) : 82 - 95
  • [7] On the metric dimension of a graph
    Sooryanarayana, B
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (04): : 413 - 415
  • [8] The fiber dimension of a graph
    Windisch, Tobias
    DISCRETE MATHEMATICS, 2019, 342 (01) : 168 - 177
  • [9] On the edge dimension of a graph
    Zubrilina, Nina
    DISCRETE MATHEMATICS, 2018, 341 (07) : 2083 - 2088
  • [10] The Krausz dimension of a graph
    Beineke, LW
    Broere, I
    UTILITAS MATHEMATICA, 2006, 69 : 183 - 194