Search Result Diversification in Short Text Streams

被引:13
|
作者
Liang, Shangsong [1 ]
Yilmaz, Emine [1 ,2 ]
Shen, Hong [3 ,4 ]
De Rijke, Maarten [5 ]
Croft, W. Bruce [6 ]
机构
[1] UCL, Dept Comp Sci, London, England
[2] Alan Turing Inst, London, England
[3] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
[4] Univ Adelaide, Dept Comp Sci, Adelaide, SA, Australia
[5] Univ Amsterdam, Informat Inst, Amsterdam, Netherlands
[6] Univ Massachusetts, Coll Informat & Comp Sci, Amherst, MA 01003 USA
关键词
Diversity; ad hoc retrieval; data streams;
D O I
10.1145/3057282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of search result diversification for streams of short texts. Diversifying search results in short text streams is more challenging than in the case of long documents, as it is difficult to capture the latent topics of short documents. To capture the changes of topics and the probabilities of documents for a given query at a specific time in a short text stream, we propose a dynamic Dirichlet multinomial mixture topic model, called D2M3, as well as a Gibbs sampling algorithm for the inference. We also propose a streaming diversification algorithm, SDA, that integrates the information captured by D2M3 with our proposed modified version of the PM-2 (Proportionality-based diversification Method second version) diversification algorithm. We conduct experiments on a Twitter dataset and find that SDA statistically significantly outperforms state-of-the-art non-streaming retrieval methods, plain streaming retrieval methods, as well as streaming diversification methods that use other dynamic topic models.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] Search Result Diversification Based on Query Facets
    Hu, Sha
    Dou, Zhi-Cheng
    Wang, Xiao-Jie
    Wen, Ji-Rong
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2015, 30 (04) : 888 - 901
  • [32] Supervised approaches for explicit search result diversification
    Yigit-Sert, Sevgi
    Altingovde, Ismail Sengor
    Macdonald, Craig
    Ounis, Iadh
    Ulusoy, Ozgur
    INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (06)
  • [33] Multidimensional Search Result Diversification: Diverse Search Results for Diverse Users
    Bhatia, Sumit
    PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 1331 - 1331
  • [34] Search result diversification combing semantic and temporal intent
    Ren, Peng-Jie
    Chen, Zhu-Min
    Ma, Jun
    Sui, Xue-Qin
    Wu, Kai
    Jisuanji Xuebao/Chinese Journal of Computers, 2015, 38 (10): : 2076 - 2091
  • [35] Supervised Search Result Diversification via Subtopic Attention
    Jiang, Zhengbao
    Dou, Zhicheng
    Zhao, Wayne Xin
    Nie, Jian-Yun
    Yue, Ming
    Wen, Ji-Rong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (10) : 1971 - 1984
  • [36] A Relevance Feedback Perspective to Image Search Result Diversification
    Boteanu, Bogdan
    Mironica, Ionut
    Ionescu, Bogdan
    2014 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2014, : 47 - 54
  • [37] An In-Depth Study of Implicit Search Result Diversification
    Yu, Hai-Tao
    Jatowt, Adam
    Blanco, Roi
    Joho, Hideo
    Jose, Joemon
    Chen, Long
    Yuan, Fajie
    INFORMATION RETRIEVAL TECHNOLOGY, AIRS 2016, 2016, 9994 : 342 - 348
  • [38] Adapting Markov Decision Process for Search Result Diversification
    Xia, Long
    Xu, Jun
    Lan, Yanyan
    Guo, Jiafeng
    Zeng, Wei
    Cheng, Xueqi
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 535 - 544
  • [39] Utilizing Word Embeddings for Result Diversification in Tweet Search
    Onal, Kezban Dilek
    Altingovde, Ismail Sengor
    Karagoz, Pinar
    INFORMATION RETRIEVAL TECHNOLOGY, AIRS 2015, 2015, 9460 : 366 - 378
  • [40] Personalized Search Result Diversification via Structured Learning
    Liang, Shangsong
    Ren, Zhaochun
    de Rijke, Maarten
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 751 - 760