An In-Depth Study of Implicit Search Result Diversification

被引:0
|
作者
Yu, Hai-Tao [1 ]
Jatowt, Adam [2 ]
Blanco, Roi [3 ]
Joho, Hideo [1 ]
Jose, Joemon [4 ]
Chen, Long [4 ]
Yuan, Fajie [4 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki, Japan
[2] Kyoto Univ, Kyoto, Japan
[3] Univ A Coruna, La Coruna, Spain
[4] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland
关键词
Search result diversification; ILP; Optimization;
D O I
10.1007/978-3-319-48051-0_29
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel Integer Linear Programming formulation (termed ILP4ID) for implicit search result diversification (SRD). The advantage is that the exact solution can be achieved, which enables us to investigate to what extent using the greedy strategy affects the performance of implicit SRD. Specifically, a series of experiments are conducted to empirically compare the state-of-the-art methods with the proposed approach. The experimental results show that: (1) The factors, such as different initial runs and the number of input documents, greatly affect the performance of diversification models. (2) ILP4ID can achieve substantially improved performance over the state-of-the-art methods in terms of standard diversity metrics.
引用
收藏
页码:342 / 348
页数:7
相关论文
共 50 条
  • [1] A Concise Integer Linear Programming Formulation for Implicit Search Result Diversification
    Yu, Hai-Tao
    Jatowt, Adam
    Blanco, Roi
    Joho, Hideo
    Jose, Joemon M.
    Chen, Long
    Yuan, Fajie
    WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2017, : 191 - 200
  • [2] Revisiting the cluster-based paradigm for implicit search result diversification
    Yu, Hai-Tao
    Jatowt, Adam
    Blanco, Roi
    Joho, Hideo
    Jose, Joemon M.
    Chen, Long
    Yuan, Fajie
    INFORMATION PROCESSING & MANAGEMENT, 2018, 54 (04) : 507 - 528
  • [3] Search Result Diversification
    Santos, R. L. T.
    Macdonald, C.
    Ounis, I.
    FOUNDATIONS AND TRENDS IN INFORMATION RETRIEVAL, 2015, 9 (01): : 1 - 90
  • [4] Search Result Diversification
    Drosou, Marina
    Pitoura, Evaggelia
    SIGMOD RECORD, 2010, 39 (01) : 41 - 47
  • [5] DVGAN: A Minimax Game for Search Result Diversification Combining Explicit and Implicit Features
    Liu, Jiongnan
    Dou, Zhicheng
    Wang, Xiaojie
    Lu, Shuqi
    Wen, Ji-Rong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 479 - 488
  • [6] Learning for Search Result Diversification
    Zhu, Yadong
    Lan, Yanyan
    Guo, Jiafeng
    Cheng, Xueqi
    Niu, Shuzi
    SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2014, : 293 - 302
  • [7] Aggregated Search Result Diversification
    Santos, Rodrygo L. T.
    Macdonald, Craig
    Ounis, Iadh
    ADVANCES IN INFORMATION RETRIEVAL THEORY, 2011, 6931 : 250 - 261
  • [8] Search Result Diversification in Flickr
    Negi, Sumit
    Jaju, Abhimanyu
    Chaudhury, Santanu
    2016 8TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMSNETS), 2016,
  • [9] A Survey on Search Result Diversification
    Dou Z.-C.
    Qin X.-B.
    Wen J.-R.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (12): : 2591 - 2613
  • [10] Result diversification for tweet search
    Ozsoy, Makbule Gulcin
    Onal, Kezban Dilek
    Altingovde, Ismail Sengor
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8787 : 78 - 89