An evolving connectionist system for data stream fuzzy clustering and its online learning

被引:12
|
作者
Bodyanskiy, Yevgeniy V. [1 ]
Tyshchenko, Oleksii K. [1 ]
Kopaliani, Daria S. [1 ]
机构
[1] Kharkiv Natl Univ Radio Elect, Control Syst Res Lab, 14 Nauky Ave, UA-61166 Kharkov, Ukraine
关键词
Evolving connectionist system; Neuro-fuzzy network; Data stream; Fuzzy clustering; C-MEANS; INFERENCE SYSTEM; NEURAL-NETWORK; IDENTIFICATION; CLASSIFIER; FLEXFIS; ETS;
D O I
10.1016/j.neucom.2017.03.081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An evolving cascade neuro-fuzzy system and its online learning procedure are considered in this paper. The system is based on conventional Kohonen neurons. The proposed system solves a clustering task of non-stationary data streams under uncertainty conditions when data come in the form of a sequential stream in an online mode. A quality estimation process is defined by finding an optimal value of the used cluster validity index. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 56
页数:16
相关论文
共 50 条
  • [1] A buffer-based online clustering for evolving data stream
    Islam, Md. Kamrul
    Ahmed, Md. Manjur
    Zamli, Kamal Z.
    [J]. INFORMATION SCIENCES, 2019, 489 : 113 - 135
  • [2] A neuro-fuzzy Kohonen network for data stream possibilistic clustering and its online self-learning procedure
    Hu, Zhengbing
    Bodyanskiy, Yevgeniy V.
    Tyshchenko, Oleksii K.
    Boiko, Olena O.
    [J]. APPLIED SOFT COMPUTING, 2018, 68 : 710 - 718
  • [3] An autoencoder-based fast online clustering algorithm for evolving data stream
    Gao, Dazheng
    [J]. 2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023, 2023, : 90 - 95
  • [4] CREDIBILISTIC ROBUST ONLINE FUZZY CLUSTERING IN DATA STREAM MINING TASKS
    Yu, Shafronenko A.
    Kasatkina, N. V.
    Ye, V. Bodyanskiy
    Ye, O. Shafronenko
    [J]. RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2023, (03) : 97 - 103
  • [5] Adaptive learning of an evolving cascade neo-fuzzy system in data stream mining tasks
    Bodyanskiy, Yevgeniy V.
    Tyshchenko, Oleksii K.
    Kopaliani, Daria S.
    [J]. EVOLVING SYSTEMS, 2016, 7 (02) : 107 - 116
  • [6] Online Active Learning in Data Stream Regression Using Uncertainty Sampling Based on Evolving Generalized Fuzzy Models
    Lughofer, Edwin
    Pratama, Mahardhika
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (01) : 292 - 309
  • [7] Learning data streams online - An evolving fuzzy system approach with self-learning/adaptive thresholds
    Ge, Dongjiao
    Zeng, Xiao-Jun
    [J]. INFORMATION SCIENCES, 2020, 507 : 172 - 184
  • [8] Data Stream Online Clustering Based on Fuzzy Expectation-Maximization Approach
    Deineko, Anastasiia O.
    Zhernova, Polina Ye
    Gordon, Boris
    Zayika, Oleksandr O.
    Pliss, Iryna
    Pabyrivska, Nelya
    [J]. 2018 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2018, : 171 - 176
  • [9] FuzzStream: Fuzzy Data Stream Clustering Based on the Online-Offline Framework
    Lopes, Priscilla de Abreu
    Camargo, Heloisa de Arruda
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [10] Evolving Fuzzy-Probabilistic Neural Network and Its Online Learning
    Bodyanskiy, Yevgeniy
    Deineko, Anastasiya
    Pliss, Iryna
    Chala, Olha
    [J]. 2020 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER INFORMATION TECHNOLOGIES (ACIT), 2020, : 465 - 468