An evolving connectionist system for data stream fuzzy clustering and its online learning

被引:12
|
作者
Bodyanskiy, Yevgeniy V. [1 ]
Tyshchenko, Oleksii K. [1 ]
Kopaliani, Daria S. [1 ]
机构
[1] Kharkiv Natl Univ Radio Elect, Control Syst Res Lab, 14 Nauky Ave, UA-61166 Kharkov, Ukraine
关键词
Evolving connectionist system; Neuro-fuzzy network; Data stream; Fuzzy clustering; C-MEANS; INFERENCE SYSTEM; NEURAL-NETWORK; IDENTIFICATION; CLASSIFIER; FLEXFIS; ETS;
D O I
10.1016/j.neucom.2017.03.081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An evolving cascade neuro-fuzzy system and its online learning procedure are considered in this paper. The system is based on conventional Kohonen neurons. The proposed system solves a clustering task of non-stationary data streams under uncertainty conditions when data come in the form of a sequential stream in an online mode. A quality estimation process is defined by finding an optimal value of the used cluster validity index. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 56
页数:16
相关论文
共 50 条
  • [41] A Density-Based Clustering over Evolving Heterogeneous Data Stream
    Lin, Jinxian
    Lin, Hui
    [J]. 2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL IV, 2009, : 275 - +
  • [42] A Three-Step Clustering Algorithm over an Evolving Data Stream
    Liu Li-xiong
    Guo Yun-fei
    Kang Jing
    Huang Hai
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 160 - 164
  • [43] A fuzzy c means variant for clustering evolving data streams
    Hore, Prodip
    Hall, Lawrence O.
    Goldgof, Dmitry B.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 802 - 807
  • [44] DEC: Dynamically Evolving Clustering and Its Application to Structure Identification of Evolving Fuzzy Models
    Baruah, Rashmi Dutta
    Angelov, Plamen
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (09) : 1619 - 1631
  • [45] Data Stream Clustering for Online Anomaly Detection in Cloud Applications
    Sauvanaud, Carla
    Silvestre, Guthemberg
    Kaaniche, Mohamed
    Kanoun, Karama
    [J]. 2015 ELEVENTH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC), 2015, : 120 - 131
  • [46] Clustering Based Active Learning for Evolving Data Streams
    Ienco, Dino
    Bifet, Albert
    Zliobaite, Indre
    Pfahringer, Bernhard
    [J]. DISCOVERY SCIENCE, 2013, 8140 : 79 - 93
  • [47] An Online Semantic-Enhanced Graphical Model for Evolving Short Text Stream Clustering
    Kumar, Jay
    Din, Salah Ud
    Yang, Qinli
    Kumar, Rajesh
    Shao, Junming
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13809 - 13820
  • [48] Clustering Evolving Batch System Jobs for Online Anomaly Detection
    Kuehn, Eileen
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 1534 - 1535
  • [49] Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems
    Chang, Pei-Chann
    Fan, Chin-Yuan
    Wang, Yen-Wen
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2008, 15 : 463 - +
  • [50] Online Evolving Fuzzy Clustering Algorithm Based on Maximum Likelihood Similarity Distance
    Rocha Filho, Orlando Donato
    de Oliveira Serra, Ginalber Luiz
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE (IBERAMIA 2014), 2014, 8864 : 269 - 280