Minimal sets of periods for maps on the Klein bottle

被引:7
|
作者
Kim, Ju Young [1 ]
Kim, Sung Sook [2 ]
Zhao, Xuezhi [3 ]
机构
[1] Catholic Univ Daegu, Dept Math, Taegu 712702, South Korea
[2] Paichai Univ, Dept Appl Math, Taejon 302735, South Korea
[3] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
关键词
periodic point; minimum set of periods; Nielsen number; Klein bottle;
D O I
10.4134/JKMS.2008.45.3.883
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main results concern with the self maps on the Klein bottle. We obtain the Reidemeister numbers and the Nielsen numbers for all self maps on the Klein bottle. In terms of the Nielsen numbers of their iterates, we totally determine the minimal sets of periods for all homotopy classes of self maps on the Klein bottle.
引用
收藏
页码:883 / 902
页数:20
相关论文
共 50 条
  • [21] Homotopy minimal periods for nilmanifold maps
    Jerzy Jezierski
    Waclaw Marzantowicz
    Mathematische Zeitschrift, 2002, 239 : 381 - 414
  • [22] Homotopy minimal periods for nilmanifold maps
    Jezierski, J
    Marzantowicz, WA
    MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (02) : 381 - 414
  • [23] Minimal sets of antitriangular maps
    Balibrea, F
    Linero, A
    Canovas, JS
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07): : 1733 - 1741
  • [24] MINIMAL SETS OF MAPS OF Y
    ALSEDA, L
    YE, XD
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (01) : 324 - 338
  • [25] Wecken type problems for self-maps of the Klein bottle
    DL Gonçalves
    MR Kelly
    Fixed Point Theory and Applications, 2006
  • [26] Wecken type problems for self-maps of the Klein bottle
    Goncalves, D. L.
    Kelly, M. R.
    FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
  • [27] Semi-equivelar maps on the torus and the Klein bottle are Archimedean
    Datta, Basudeb
    Maity, Dipendu
    DISCRETE MATHEMATICS, 2018, 341 (12) : 3296 - 3309
  • [28] Enumeration of doubly semi-equivelar maps on the Klein bottle
    Singh, Yogendra
    Tiwari, Anand Kumar
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [29] CLASSIFICATION OF CLOSED LOCALLY MINIMAL NETWORKS ON FLAT KLEIN BOTTLE
    PTITSINA, IV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1995, (02): : 15 - 22
  • [30] Sets of Periods for Expanding Maps on Flat Manifolds
    Roberto Tauraso
    Monatshefte für Mathematik, 1999, 128 : 151 - 157