Enumeration of doubly semi-equivelar maps on the Klein bottle

被引:1
|
作者
Singh, Yogendra [1 ]
Tiwari, Anand Kumar [2 ]
机构
[1] Vignans Fdn Sci Technol & Res, Dept Math & Stat, Vadlamudi 522213, Andhra Pradesh, India
[2] Indian Inst Informat Technol Allahabad, Dept Appl Sci, Prayagraj 211015, Uttar Pradesh, India
关键词
Doubly semi-equivelar maps; Face-sequence; Combinatorial curvature; Klein bottle; TORUS;
D O I
10.1007/s13226-023-00503-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex v in a map M has the face-sequence (p(1)(n1) . p(2)(n2).....p(k)(nk)), if consecutive n(i) numbers of p(i)-gons are incident at v in the given cyclic order for 1 <= i <= k. A map is called semi-equivelar if the face-sequence of each vertex is same throughout the map. A doubly semi-equivelar map is a generalization of semi-equivelar map which has precisely 2 distinct face-sequences. In this article, we determine all the types of doubly semi-equivelar maps of combinatorial curvature 0 on the Klein bottle. We present classification of doubly semi-equivelar maps on the Klein bottle and illustrate this classification for those doubly semi-equivelar maps which comprise of face-sequence pairs {(3(6)), (3(3).4(2))} and {(3(3).4(2)), (4(4))}.
引用
收藏
页数:24
相关论文
共 37 条
  • [1] Semi-equivelar maps on the torus and the Klein bottle are Archimedean
    Datta, Basudeb
    Maity, Dipendu
    DISCRETE MATHEMATICS, 2018, 341 (12) : 3296 - 3309
  • [2] SEMI-EQUIVELAR MAPS ON THE TORUS AND THE KLEIN BOTTLE WITH FEW VERTICES
    Tiwari, Anand Kumar
    Upadhyay, Ashish Kumar
    MATHEMATICA SLOVACA, 2017, 67 (02) : 519 - 532
  • [3] Doubly semi-equivelar maps on the plane and the torus
    Singh, Yogendra
    Tiwari, Anand Kumar
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 296 - 310
  • [4] Semi-equivelar maps
    Upadhyay A.K.
    Tiwari A.K.
    Maity D.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (1): : 229 - 242
  • [5] 2-semi equivelar maps on the torus and the Klein bottle with few vertices
    Tiwari, Anand Kumar
    Singh, Yogendra
    Tripathi, Amit
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [6] Semi-equivelar and vertex-transitive maps on the torus
    Datta B.
    Maity D.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (3): : 617 - 634
  • [7] Some Semi-equivelar Maps of Euler Characteristics-2
    Debashis Bhowmik
    Ashish Kumar Upadhyay
    National Academy Science Letters, 2021, 44 : 433 - 436
  • [8] Correction to: Semi-equivelar and vertex-transitive maps on the torus
    Basudeb Datta
    Dipendu Maity
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 187 - 188
  • [9] Platonic solids, Archimedean solids and semi-equivelar maps on the sphere
    Datta, Basudeb
    Maity, Dipendu
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [10] Some Semi-equivelar Maps of Euler Characteristics-2
    Bhowmik, Debashis
    Upadhyay, Ashish Kumar
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2021, 44 (05): : 433 - 436