Enumeration of doubly semi-equivelar maps on the Klein bottle

被引:1
|
作者
Singh, Yogendra [1 ]
Tiwari, Anand Kumar [2 ]
机构
[1] Vignans Fdn Sci Technol & Res, Dept Math & Stat, Vadlamudi 522213, Andhra Pradesh, India
[2] Indian Inst Informat Technol Allahabad, Dept Appl Sci, Prayagraj 211015, Uttar Pradesh, India
关键词
Doubly semi-equivelar maps; Face-sequence; Combinatorial curvature; Klein bottle; TORUS;
D O I
10.1007/s13226-023-00503-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex v in a map M has the face-sequence (p(1)(n1) . p(2)(n2).....p(k)(nk)), if consecutive n(i) numbers of p(i)-gons are incident at v in the given cyclic order for 1 <= i <= k. A map is called semi-equivelar if the face-sequence of each vertex is same throughout the map. A doubly semi-equivelar map is a generalization of semi-equivelar map which has precisely 2 distinct face-sequences. In this article, we determine all the types of doubly semi-equivelar maps of combinatorial curvature 0 on the Klein bottle. We present classification of doubly semi-equivelar maps on the Klein bottle and illustrate this classification for those doubly semi-equivelar maps which comprise of face-sequence pairs {(3(6)), (3(3).4(2))} and {(3(3).4(2)), (4(4))}.
引用
收藏
页数:24
相关论文
共 37 条