Automated pill quality inspection using deep learning

被引:1
|
作者
Mac, Thi Thoa [1 ]
Hung, Nguyen Thanh [1 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Mech Engn, 1 Dai Co Viet St, Hanoi 100000, Vietnam
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2021年 / 35卷 / 14N16期
关键词
Quality inspection; deep convolutional network; deep learning; optimization;
D O I
10.1142/S0217979221400506
中图分类号
O59 [应用物理学];
学科分类号
摘要
The pill manufacturing process accrues substantial financial costs due to quality. Pill quality inspection is laborious, time-consuming and subjective, resulting in poor statistical representation and inconsistent results. In this study, we developed an approach that integrates deep learning algorithms and computer-vision-based processing with an optimization algorithm to fully automate the image analysis of internal crack/contamination detection. This approach exploits the features learned by convolutional neural network using various sub-processing techniques and Adam optimization. It achieves robust quantification of internal pill defects with an average accuracy of 95%.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Automated Bridge Inspection Image Retrieval Based on Deep Similarity Learning and GPS
    Wogen, Benjamin E.
    Choi, Jongseong
    Zhang, Xin
    Liu, Xiaoyu
    Iturburu, Lissette
    Dyke, Shirley J.
    [J]. JOURNAL OF STRUCTURAL ENGINEERING, 2024, 150 (03)
  • [42] Improved Automated Quality Control of Skeletal Wrist Radiographs Using Deep Multitask Learning
    Hembroff, Guy
    Klochko, Chad
    Craig, Joseph
    Changarnkothapeecherikkal, Harikrishnan
    Loi, Richard Q.
    [J]. JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024,
  • [43] Automated Data Quality Control in FDOPA brain PET Imaging using Deep Learning
    Pontoriero, Antonella D.
    Nordio, Giovanna
    Easmin, Rubaida
    Giacomel, Alessio
    Santangelo, Barbara
    Jahuar, Sameer
    Bonoldi, Ilaria
    Rogdaki, Maria
    Turkheimer, Federico
    Howes, Oliver
    Veronese, Mattia
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208
  • [44] A Framework for Industrial Inspection System using Deep Learning
    Hridoy M.W.
    Rahman M.M.
    Sakib S.
    [J]. Annals of Data Science, 2024, 11 (02) : 445 - 478
  • [45] Study on the digitalization of tunnel inspection using deep learning
    Ohara, Y.
    Nakayama, T.
    Miwa, A.
    Shimizu, T.
    [J]. PROCEEDINGS OF THE ITA-AITES WORLD TUNNEL CONGRESS 2023, WTC 2023: Expanding Underground-Knowledge and Passion to Make a Positive Impact on the World, 2023, : 2813 - 2821
  • [46] Fabric Image Inspection Using Deep Learning Approach
    Sizyakin, R.
    Voronin, V.
    Gapon, N.
    Semenishchev, E.
    Shakhramanyan, M.
    Zelensky, A.
    Ilyukhin, Yu
    [J]. OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS IX, 2022, 12319
  • [47] Automated crack segmentation in close-range building facade inspection images using deep learning techniques
    Chen, Kaiwen
    Reichard, Georg
    Xu, Xin
    Akanmu, Abiola
    [J]. JOURNAL OF BUILDING ENGINEERING, 2021, 43
  • [48] Low-Cost Real-Time Automated Optical Inspection Using Deep Learning and Attention Map
    Shih, Yu
    Kuo, Chien-Chih
    Lee, Ching -Hung
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (02): : 2087 - 2099
  • [49] Automated pig counting using deep learning
    Tian, Mengxiao
    Guo, Hao
    Chen, Hong
    Wang, Qing
    Long, Chengjiang
    Ma, Yuhao
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 163
  • [50] Automated prediction of endometriosis using deep learning
    Visalaxi, S.
    Muthu, T. Sudalai
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 2403 - 2416