Improved Automated Quality Control of Skeletal Wrist Radiographs Using Deep Multitask Learning

被引:0
|
作者
Hembroff, Guy [1 ]
Klochko, Chad [2 ]
Craig, Joseph [2 ]
Changarnkothapeecherikkal, Harikrishnan [1 ]
Loi, Richard Q. [2 ]
机构
[1] Michigan Technol Univ, Dept Appl Comp, 1400 Townsend Dr, Houghton, MI 49931 USA
[2] Henry Ford Hosp, Dept Radiol, Div Musculoskeletal Radiol, 2799 West Grand Blvd, Detroit, MI 48202 USA
关键词
Convolutional neural network; Radiographic quality control; Image classification; Deep learning; Image analysis; Healthcare quality improvement; SITE;
D O I
10.1007/s10278-024-01220-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiographic quality control is an integral component of the radiology workflow. In this study, we developed a convolutional neural network model tailored for automated quality control, specifically designed to detect and classify key attributes of wrist radiographs including projection, laterality (based on the right/left marker), and the presence of hardware and/or casts. The model's primary objective was to ensure the congruence of results with image requisition metadata to pass the quality assessment. Using a dataset of 6283 wrist radiographs from 2591 patients, our multitask-capable deep learning model based on DenseNet 121 architecture achieved high accuracy in classifying projections (F1 Score of 97.23%), detecting casts (F1 Score of 97.70%), and identifying surgical hardware (F1 Score of 92.27%). The model's performance in laterality marker detection was lower (F1 Score of 82.52%), particularly for partially visible or cut-off markers. This paper presents a comprehensive evaluation of our model's performance, highlighting its strengths, limitations, and the challenges encountered during its development and implementation. Furthermore, we outline planned future research directions aimed at refining and expanding the model's capabilities for improved clinical utility and patient care in radiographic quality control.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Automated chart filing on panoramic radiographs using deep learning
    Vinayahalingam, Shankeeth
    Goey, Ru-shan
    Kempers, Steven
    Schoep, Julian
    Cherici, Teo
    Moin, David Anssari
    Hanisch, Marcel
    [J]. JOURNAL OF DENTISTRY, 2021, 115
  • [2] Automated Identification of Orthopedic Implants on Radiographs Using Deep Learning
    Patel, Ravi
    Thong, Elizabeth H. E.
    Batta, Vineet
    Bharath, Anil Anthony
    Francis, Darrel
    Howard, James
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (04)
  • [3] Automatic Detection of Perilunate and Lunate Dislocations on Wrist Radiographs Using Deep Learning
    Pridgen, Brian
    von Rabenau, Lisa
    Luan, Anna
    Gu, Angela J.
    Wang, David S.
    Langlotz, Curtis
    Chang, James
    Do, Bao
    [J]. PLASTIC AND RECONSTRUCTIVE SURGERY, 2024, 153 (06) : 1138e - 1141e
  • [4] Multitask Deep Learning for Segmentation and Classification of Primary Bone Tumors on Radiographs
    von Schacky, Claudio E.
    Wilhelm, Nikolas J.
    Schafer, Valerie S.
    Leonhardt, Yannik
    Gassert, Felix G.
    Foreman, Sarah C.
    Gassert, Florian T.
    Jung, Matthias
    Jungmann, Pia M.
    Russe, Maximilian F.
    Mogler, Carolin
    Knebel, Carolin
    von Eisenhart-Rothe, Rudiger
    Makowski, Marcus R.
    Woertler, Klaus
    Burgkart, Rainer
    Gersing, Alexandra S.
    [J]. RADIOLOGY, 2021, 301 (02) : 398 - 406
  • [5] Automated detection of dental restorations using deep learning on panoramic radiographs
    Celik, Berrin
    Celik, Mahmut Emin
    [J]. DENTOMAXILLOFACIAL RADIOLOGY, 2022, 51 (08)
  • [6] Automated feature detection in dental periapical radiographs by using deep learning
    Khan, Hassan Aqeel
    Haider, Muhammad Ali
    Ansari, Hassan Ali
    Ishaq, Hamna
    Kiyani, Amber
    Sohail, Kanwal
    Muhammad, Muhammad
    Khurram, Syed Ali
    [J]. ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2021, 131 (06): : 711 - 720
  • [7] Automated abnormality detection in lower extremity radiographs using deep learning
    Varma, Maya
    Lu, Mandy
    Gardner, Rachel
    Dunnmon, Jared
    Khandwala, Nishith
    Rajpurkar, Pranav
    Long, Jin
    Beaulieu, Christopher
    Shpanskaya, Katie
    Li Fei-Fei
    Lungren, Matthew P.
    Patel, Bhavik N.
    [J]. NATURE MACHINE INTELLIGENCE, 2019, 1 (12) : 578 - 583
  • [8] Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning
    Yi, Paul H.
    Kim, Tae Kyung
    Wei, Jinchi
    Shin, Jiwon
    Hui, Ferdinand K.
    Sair, Haris I.
    Hager, Gregory D.
    Fritz, Jan
    [J]. PEDIATRIC RADIOLOGY, 2019, 49 (08) : 1066 - 1070
  • [9] Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning
    Paul H. Yi
    Tae Kyung Kim
    Jinchi Wei
    Jiwon Shin
    Ferdinand K. Hui
    Haris I. Sair
    Gregory D. Hager
    Jan Fritz
    [J]. Pediatric Radiology, 2019, 49 : 1066 - 1070
  • [10] Automated abnormality detection in lower extremity radiographs using deep learning
    Maya Varma
    Mandy Lu
    Rachel Gardner
    Jared Dunnmon
    Nishith Khandwala
    Pranav Rajpurkar
    Jin Long
    Christopher Beaulieu
    Katie Shpanskaya
    Li Fei-Fei
    Matthew P. Lungren
    Bhavik N. Patel
    [J]. Nature Machine Intelligence, 2019, 1 : 578 - 583