H-NS forms a superhelical protein scaffold for DNA condensation

被引:150
|
作者
Arold, Stefan T. [1 ]
Leonard, Paul G. [2 ]
Parkinson, Gary N. [3 ]
Ladbury, John E. [1 ,2 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biochem & Mol Biol, Unit 1000, Houston, TX 77030 USA
[2] UCL, Dept Struct & Mol Biol, London WC1E 6BT, England
[3] Univ London, Sch Pharm, Dept Pharmaceut & Biol Chem, London WC1N 1AX, England
关键词
chromatin; DNA binding; nucleoid; supercoil; transcriptional regulation; CHROMATIN-STRUCTURING PROTEIN; NUCLEOID-ASSOCIATED PROTEIN; ESCHERICHIA-COLI; OLIGOMERIZATION DOMAIN; DIMERIZATION DOMAIN; SELF-ASSOCIATION; GENE-EXPRESSION; BINDING; MECHANISM; TRANSCRIPTION;
D O I
10.1073/pnas.1006966107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The histone-like nucleoid structuring (H-NS) protein plays a fundamental role in DNA condensation and is a key regulator of enterobacterial gene expression in response to changes in osmolarity, pH, and temperature. The protein is capable of high-order self-association via interactions of its oligomerization domain. Using crystallography, we have solved the structure of this complete domain in an oligomerized state. The observed superhelical structure establishes a mechanism for the self-association of H-NS via both an N-terminal antiparallel coiled-coil and a second, hitherto unidentified, helix-turn-helix dimerization interface at the C-terminal end of the oligomerization domain. The helical scaffold suggests the formation of a H-NS: plectonemic DNA nucleoprotein complex that is capable of explaining published biophysical and functional data, and establishes a unifying structural basis for coordinating the DNA packaging and transcription repression functions of H-NS.
引用
收藏
页码:15728 / 15732
页数:5
相关论文
共 50 条
  • [31] The effect of carbon nanotube on the structure of H-NS protein DNA complex: molecular dynamics approach
    Mahdavipour, Najmeh
    Bozorgmehr, Mohammad Reza
    Momen-Heravi, Mohammad
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2019, 10 (06): : 701 - 710
  • [32] Gene silencing by H-NS from distal DNA site
    Shin, Minsang
    Lagda, Arvin Cesar
    Lee, Jae Woong
    Bhat, Abhay
    Rhee, Joon Haeng
    Kim, Jeong-Sun
    Takeyasu, Kunio
    Choy, Hyon E.
    MOLECULAR MICROBIOLOGY, 2012, 86 (03) : 707 - 719
  • [33] The nucleoid protein H-NS facilitates chromosome DNA replication in Escherichia coli dnaA mutants
    Katayama, T
    Takata, M
    Sekimizu, K
    JOURNAL OF BACTERIOLOGY, 1996, 178 (19) : 5790 - 5792
  • [34] Structural basis for preferential binding of H-NS to curved DNA
    Dame, RT
    Wyman, C
    Goosen, N
    BIOCHIMIE, 2001, 83 (02) : 231 - 234
  • [35] Success in incorporating horizontally transferred genes: the H-NS protein
    Huettener, Mario
    Paytubi, Sonia
    Juarez, Antonio
    TRENDS IN MICROBIOLOGY, 2015, 23 (02) : 67 - 69
  • [36] Nature and mechanism of the in vivo oligomerization of nucleoid protein H-NS
    Stella, S
    Spurio, R
    Falconi, M
    Pon, CL
    Gualerzi, CO
    EMBO JOURNAL, 2005, 24 (16): : 2896 - 2905
  • [37] Environmental control of the in vivo oligomerization of nucleoid protein H-NS
    Stella, S
    Falconi, M
    Lammi, M
    Gualerzi, CO
    Pon, CL
    JOURNAL OF MOLECULAR BIOLOGY, 2006, 355 (02) : 169 - 174
  • [38] Protective role for H-NS protein in IS1 transposition
    Rouquette, C
    Serre, MC
    Lane, D
    JOURNAL OF BACTERIOLOGY, 2004, 186 (07) : 2091 - 2098
  • [39] A global modulatory role for the Yersinia enterocolitica H-NS protein
    Banos, Rosa C.
    Pons, Jose I.
    Madrid, Cristina
    Juarez, Antonio
    MICROBIOLOGY-SGM, 2008, 154 : 1281 - 1289
  • [40] H-NS, the genome sentinel
    Dorman, Charles J.
    NATURE REVIEWS MICROBIOLOGY, 2007, 5 (02) : 157 - 161