On the Performance of the Jackknifed Modified Ridge Estimator in the Linear Regression Model with Correlated or Heteroscedastic Errors

被引:8
|
作者
Li, Yalian [1 ,1 ]
Yang, Hu [1 ]
机构
[1] Chongqing Univ, Dept Stat & Actuarial Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized least squares estimate; Generalized modified ridge estimator; Jackknifed modified ridge estimator; Jackknife procedure; Jackknifed ridge estimator;
D O I
10.1080/03610926.2010.491589
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we introduce a new estimator by jackknifing the modified ridge estimator based on prior information for the vector of parameters in the linear regression model with correlated or heteroscedastic errors. Furthermore, we discuss its properties and compare that our new estimator is superior, in the mean square error matrix and mean square error sense, to the generalized least squares estimate, the generalized modified ridge estimator and the generalized jackknifed ridge estimator, respectively. Finally, a numerical example is done to illustrate some of the theoretical results.
引用
收藏
页码:2695 / 2708
页数:14
相关论文
共 50 条
  • [31] Jackknifed Liu-type Estimator in Poisson Regression Model
    Alkhateeb, Ahmed Naziyah
    Algamal, Zakariya Yahya
    [J]. JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2020, 19 (01): : 21 - 37
  • [32] Ridge-Type MML Estimator in the Linear Regression Model
    Sukru Acitas
    Birdal Senoglu
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 589 - 599
  • [33] Ridge-Type MML Estimator in the Linear Regression Model
    Acitas, Sukru
    Senoglu, Birdal
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A2): : 589 - 599
  • [34] Modified two parameter ridge estimator for beta regression model
    Junaid, Ayesha
    Khan, Aamna
    Alrumayh, Amani
    Alghamdi, Fatimah M.
    Hussam, Eslam
    Aljohani, Hassan M.
    Alrashidi, Afaf
    [J]. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (02)
  • [35] A new stochastic mixed ridge estimator in linear regression model
    Yalian Li
    Hu Yang
    [J]. Statistical Papers, 2010, 51 : 315 - 323
  • [36] RIDGE LEAST SQUARES RATIO ESTIMATOR FOR LINEAR REGRESSION MODEL
    Jadhav, N. H.
    Kashid, D. N.
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2018, 14 (02): : 439 - 447
  • [37] A new stochastic mixed ridge estimator in linear regression model
    Li, Yalian
    Yang, Hu
    [J]. STATISTICAL PAPERS, 2010, 51 (02) : 315 - 323
  • [38] Modified ridge-type estimator for the gamma regression model
    Lukman, Adewale F.
    Ayinde, Kayode
    Kibria, B. M. Golam
    Adewuyi, Emmanuel T.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (09) : 5009 - 5023
  • [39] Difference-based ridge-type estimator of parameters in restricted partial linear model with correlated errors
    Wu, Jibo
    [J]. SPRINGERPLUS, 2016, 5 : 1 - 10
  • [40] Mean squared error comparisons of the modified ridge regression estimator and the restricted ridge regression estimator
    Kaciranlar, S
    Sakallioglu, S
    Akdeniz, F
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (01) : 131 - 138