Jackknifed Liu-type Estimator in Poisson Regression Model

被引:17
|
作者
Alkhateeb, Ahmed Naziyah [1 ]
Algamal, Zakariya Yahya [2 ]
机构
[1] Univ Mosul, Dept Operat Res & Intelligent Tech, Mosul, Iraq
[2] Univ Mosul, Coll Comp Sci & Math, Dept Stat & Informat, Mosul, Iraq
来源
关键词
Multicollinearity; Liu Estimator; Poisson Regression Model; Shrinkage; Monte Carlo Simulation; RIDGE-REGRESSION; BIASING PARAMETER; PERFORMANCE;
D O I
10.29252/jirss.19.1.21
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regression coefficients. To address this problem, a Poisson Liu estimator has been proposed by numerous researchers. In this paper, a Jackknifed Liu-type Poisson estimator (JPLTE) is proposed and derived. The idea behind the JPLTE is to decrease the shrinkage parameter and, therefore, improve the resultant estimator by reducing the amount of bias. Our Monte Carlo simulation results suggest that the JPLTE estimator can bring significant improvements relative to other existing estimators. In addition, the results of a real application demonstrate that the JPLTE estimator outperforms both the Poisson Liu estimator and the maximum likelihood estimator in terms of predictive performance.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [1] Jackknifed Liu-type estimator in the Conway-Maxwell Poisson regression model
    Rasheed, Husam AbdulRazzak
    Sadik, Nazik J.
    Algamal, Zakariya Yahya
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 3153 - 3168
  • [2] Jackknifed Liu-type estimator in the negative binomial regression model
    Jabur, Dhafer Myasar
    Rashad, Nadwa Khazaal
    Algamal, Zakariya Yahya
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2675 - 2684
  • [3] On the performance of the Jackknifed Liu-type estimator in linear regression model
    Yildiz, Nilgun
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (09) : 2278 - 2290
  • [4] Efficiency of the modified jackknifed Liu-type estimator
    Esra Akdeniz Duran
    Fikri Akdeniz
    [J]. Statistical Papers, 2012, 53 : 265 - 280
  • [5] Efficiency of the modified jackknifed Liu-type estimator
    Duran, Esra Akdeniz
    Akdeniz, Fikri
    [J]. STATISTICAL PAPERS, 2012, 53 (02) : 265 - 280
  • [6] Liu-type estimator for the gamma regression model
    Algamal, Zakariya Yahya
    Asar, Yasin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (08) : 2035 - 2048
  • [7] A new improved Liu-type estimator for Poisson regression models
    Akay, Kadri Ulas
    Ertan, Esra
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (05): : 1484 - 1503
  • [8] A new Liu-type estimator for the gamma regression model
    Ertan, Esra
    Erkoc, Ali
    Akay, Kadri Ulas
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [9] Developing a Liu-type estimator in beta regression model
    Algamal, Zakariya Yahya
    Abonazel, Mohamed R.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (05):
  • [10] A new Liu-type estimator in linear regression model
    Li, Yalian
    Yang, Hu
    [J]. STATISTICAL PAPERS, 2012, 53 (02) : 427 - 437