The cover time of random geometric graphs

被引:0
|
作者
Cooper, Colin [1 ]
Frieze, Alan [2 ]
机构
[1] Univ Londo, Kings Coll, Dept Comp Sci, London WC2R 2LS, England
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
RANDOM-WALKS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the cover time of random geometric graphs. Let I(d) = [0, 1](d) denote the unit torus in d dimensions. Let D(x, r) denote the ball (disc) of radius r. Let Gamma(d) be the volume of the unit ball D(0,1) in d dimensions. A random geometric graph G = G(d, r, n) in d dimensions is defined as follows: Sample n points V independently and uniformly at random from I(d). For each point x draw a ball D(x,r) of radius r about x. The vertex set V(G) = V and the edge set E(G) = {{v,w} : w not equal v, w is an element of D(v, r)}. Let G(d, r, n), d >= 3 be a random geometric graph. Let c > 1 be constant, and let r = (c log n/(Gamma(d)n))(1/d). Then whp C-G similar to c log (c/c - 1) n log n.
引用
收藏
页码:48 / +
页数:2
相关论文
共 50 条
  • [21] Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs
    Blaesius, Thomas
    Fischbeck, Philipp
    Friedrich, Tobias
    Katzmann, Maximilian
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [22] Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions
    Friedrich, Tobias
    Sauerwald, Thomas
    Stauffer, Alexandre
    ALGORITHMICA, 2013, 67 (01) : 65 - 88
  • [23] Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions
    Tobias Friedrich
    Thomas Sauerwald
    Alexandre Stauffer
    Algorithmica, 2013, 67 : 65 - 88
  • [24] Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions
    Friedrich, Tobias
    Sauerwald, Thomas
    Stauffer, Alexandre
    ALGORITHMS AND COMPUTATION, 2011, 7074 : 190 - +
  • [25] Random models for geometric graphs
    Serna, Maria
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2007, 4525 : 37 - 37
  • [26] SYNCHRONIZATION IN RANDOM GEOMETRIC GRAPHS
    Diaz-Guilera, Albert
    Gomez-Gardenes, Jesus
    Moreno, Yamir
    Nekovee, Maziar
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (02): : 687 - 693
  • [27] Infinite Random Geometric Graphs
    Bonato, Anthony
    Janssen, Jeannette
    ANNALS OF COMBINATORICS, 2011, 15 (04) : 597 - 617
  • [28] On the Distribution of Random Geometric Graphs
    Badiu, Mihai-Alin
    Coon, Justin P.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 2137 - 2141
  • [29] Directed random geometric graphs
    Michel, Jesse
    Reddy, Sushruth
    Shah, Rikhav
    Silwal, Sandeep
    Movassagh, Ramis
    JOURNAL OF COMPLEX NETWORKS, 2019, 7 (05) : 792 - 816
  • [30] Geometric inhomogeneous random graphs
    Bringmann, Karl
    Keusch, Ralph
    Lengler, Johannes
    THEORETICAL COMPUTER SCIENCE, 2019, 760 : 35 - 54