Robust Standard Gradient Descent Algorithm for ARX Models Using Aitken Acceleration Technique

被引:14
|
作者
Chen, Jing [1 ]
Gan, Min [2 ]
Zhu, Quanmin [3 ]
Narayan, Pritesh [3 ]
Liu, Yanjun [4 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
[3] Univ West England, Dept Engn Design & Math, Bristol BS16 1QY, Avon, England
[4] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence; Acceleration; Mathematical model; Standards; Parameter estimation; Nonlinear equations; Computational modeling; Aitken acceleration technique; ARX model; convergence rate; parameter estimation; standard gradient descent (SGD) algorithm; LINEAR-SYSTEMS; IDENTIFICATION;
D O I
10.1109/TCYB.2021.3063113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A robust standard gradient descent (SGD) algorithm for ARX models using the Aitken acceleration method is developed. Considering that the SGD algorithm has slow convergence rates and is sensitive to the step size, a robust and accelerative SGD (RA-SGD) algorithm is derived. This algorithm is based on the Aitken acceleration method, and its convergence rate is improved from linear convergence to at least quadratic convergence in general. Furthermore, the RA-SGD algorithm is always convergent with no limitation of the step size. Both the convergence analysis and the simulation examples demonstrate that the presented algorithm is effective.
引用
收藏
页码:9646 / 9655
页数:10
相关论文
共 50 条
  • [41] CONTROLLING STOCHASTIC GRADIENT DESCENT USING STOCHASTIC APPROXIMATION FOR ROBUST DISTRIBUTED OPTIMIZATION
    Jain, Adit
    Krishnamurthy, Vikram
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2025, 15 (01): : 173 - 195
  • [42] ESTIMATION IN LINEAR-MODELS USING GRADIENT DESCENT WITH EARLY STOPPING
    SKOURAS, K
    GOUTIS, C
    BRAMSON, MJ
    STATISTICS AND COMPUTING, 1994, 4 (04) : 271 - 278
  • [43] A normalized gradient descent algorithm for nonlinear adaptive filters using a gradient adaptive step size
    Mandic, DP
    Hanna, AI
    Razaz, M
    IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (11) : 295 - 297
  • [44] Robust recursive time series modeling using ARX models with optimal exogenous inputs
    Kovacevic, B
    Durovic, Z
    DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 911 - 914
  • [45] Adaptive Gradient Descent Algorithm for Networked Control Systems Using Redundant Rule
    Lv, Lixin
    Zhang, Jian
    IEEE ACCESS, 2021, 9 : 41669 - 41675
  • [46] Telescope Alignment Method Using a Modified Stochastic Parallel Gradient Descent Algorithm
    Li, Min
    Liu, Xin
    Zhang, Junbo
    Xian, Hao
    PHOTONICS, 2024, 11 (11)
  • [47] Reconstruction of Global Ozone Density Data using a Gradient-Descent Algorithm
    Stankovic, Isidora
    Dai, Wei
    PROCEEDINGS OF ELMAR 2016 - 58TH INTERNATIONAL SYMPOSIUM ELMAR 2016, 2016, : 85 - 88
  • [48] Deep learning for sea cucumber detection using stochastic gradient descent algorithm
    Zhang, Huaqiang
    Yu, Fusheng
    Sun, Jincheng
    Shen, Xiaoqin
    Li, Kun
    EUROPEAN JOURNAL OF REMOTE SENSING, 2020, 53 (53-62) : 53 - 62
  • [49] Estimation of the single GPS-receiver bias using the gradient descent algorithm
    Chiablaem, Athiwat
    Supnithi, Pornchai
    Klinngam, Somjai
    Kenpankho, Prasert
    Panachart, Chaiwat
    Watthanasangmechai, Kornyanat
    Yokoyama, Tatsuhiro
    Tsugawa, Takuya
    Ishii, Mamoru
    Saekow, Apithep
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [50] Power Allocation in OFDM-CR using Accelerated Gradient Descent Algorithm
    Sooraj, K. U.
    Godfrey, W. Wilfred
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 562 - 565