Deep learning for sea cucumber detection using stochastic gradient descent algorithm

被引:12
|
作者
Zhang, Huaqiang [1 ]
Yu, Fusheng [1 ]
Sun, Jincheng [2 ]
Shen, Xiaoqin [1 ]
Li, Kun [1 ]
机构
[1] Shandong Jianzhu Univ, Coll Mech & Elect Engn, Jinan, Peoples R China
[2] Shandong Jianzhu Univ, Engn Training Ctr, Jinan, Peoples R China
关键词
Sea cucumber; deep learning (DL); stochastic gradient descent algorithm; underwater sea cucumber identification; C-Watch;
D O I
10.1080/22797254.2020.1715265
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A large number of natural products secluded from sea atmosphere has been identified for the pharmacodynamic probable in varied illness handlings, such as, tumor or inflammatory states. Sea cucumber culturing and fishing is mainly reliant on physical works. For quick and precise programmed recognition, deep residual networks with various forms used to recognize the submarine sea cucumber. The imageries have been taken by a C-Watch distantly worked submarine automobile. To improve the pixel quality of the image, a training algorithm called Stochastic Gradient Descent algorithm (SGD) has been proposed in this paper. It explains how efficiently fetching the picture characteristics to expand the accurateness of sea cucumber detection, that might be reached by higher training information set and preprocessing information set with remove and denoising procedures towards increase picture eminence. Furthermore, the DL network might be linked through faster expertise to settle the location, also recognize the number of sea cucumber inimages, and weightiness valuation modeling is similarly required to be progressed to execute programmed take actions. The functioning of the planned technique specifies excellent latent for manual sea cucumber detection..
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [1] Sea Cucumber Detection Algorithm Based on Deep Learning
    Zhang, Lan
    Xing, Bowen
    Wang, Wugui
    Xu, Jingxiang
    [J]. SENSORS, 2022, 22 (15)
  • [2] An efficient, distributed stochastic gradient descent algorithm for deep-learning applications
    Cong, Guojing
    Bhardwaj, Onkar
    Feng, Minwei
    [J]. 2017 46TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP), 2017, : 11 - 20
  • [3] A Modified Stochastic Gradient Descent Optimization Algorithm With Random Learning Rate for Machine Learning and Deep Learning
    Duk-Sun Shim
    Joseph Shim
    [J]. International Journal of Control, Automation and Systems, 2023, 21 : 3825 - 3831
  • [4] Recent Advances in Stochastic Gradient Descent in Deep Learning
    Tian, Yingjie
    Zhang, Yuqi
    Zhang, Haibin
    [J]. MATHEMATICS, 2023, 11 (03)
  • [5] A Modified Stochastic Gradient Descent Optimization Algorithm With Random Learning Rate for Machine Learning and Deep Learning
    Shim, Duk-Sun
    Shim, Joseph
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (11) : 3825 - 3831
  • [6] Weighted Aggregating Stochastic Gradient Descent for Parallel Deep Learning
    Guo, Pengzhan
    Ye, Zeyang
    Xiao, Keli
    Zhu, Wei
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (10) : 5037 - 5050
  • [7] A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces
    Le Lan, Charline
    Greaves, Joshua
    Farebrother, Jesse
    Rowland, Mark
    Pedregosa, Fabian
    Agarwal, Rishabh
    Bellemare, Marc
    [J]. arXiv, 2022,
  • [8] Improvement of SPGD by Gradient Descent Optimization Algorithm in Deep Learning
    Zhao, Qingsong
    Hao, Shiqi
    Wang, Yong
    Wang, Lei
    Lin, Zhi
    [J]. 2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 469 - 472
  • [9] A stochastic multiple gradient descent algorithm
    Mercier, Quentin
    Poirion, Fabrice
    Desideri, Jean-Antoine
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 271 (03) : 808 - 817
  • [10] A DAG Model of Synchronous Stochastic Gradient Descent in Distributed Deep Learning
    Shi, Shaohuai
    Wang, Qiang
    Chu, Xiaowen
    Li, Bo
    [J]. 2018 IEEE 24TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2018), 2018, : 425 - 432