Constrained submodular maximization via greedy local search

被引:21
|
作者
Sarpatwar, Kanthi K. [1 ]
Schieber, Baruch [2 ]
Shachnai, Hadas [3 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] Technion, Comp Sci Dept, IL-3200003 Haifa, Israel
基金
美国国家科学基金会;
关键词
Submodular functions; Matroid; Knapsack; APPROXIMATIONS;
D O I
10.1016/j.orl.2018.11.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a simple combinatorial 1-e(-2)/2 approximation algorithm for maximizing a monotone submodular function subject to a knapsack and a matroid constraint. This classic problem is knownto be hard to approximate within factor better than 1 - 1/e. We extend the algorithm to yield 1-e(-(k+1))/k+1 approximation for submodular maximization subject to a single knapsack and k matroid constraints, for any fixed k > 1. Our algorithms, which combine the greedy algorithm of Khuller et al. (1999) and Sviridenko (2004) with local search, show the power of this natural framework in submodular maximization with combined constraints. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] Adaptive Sampling for Fast Constrained Maximization of Submodular Functions
    Quinzan, Francesco
    Doskoc, Vanja
    Goebel, Andreas
    Friedrich, Tobias
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [32] Learning automata-accelerated greedy algorithms for stochastic submodular maximization
    Di, Chong
    Li, Fangqi
    Xu, Pengyao
    Guo, Ying
    Chen, Chao
    Shu, Minglei
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 282
  • [33] Performance guarantees for greedy maximization of non-submodular controllability metrics
    Summers, Tyler
    Kamgarpour, Maryam
    [J]. 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 2796 - 2801
  • [34] Fast Constrained Submodular Maximization: Personalized Data Summarization
    Mirzasoleiman, Baharan
    Badanidiyuru, Ashwinkumar
    Karbasi, Amin
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [35] Interlaced Greedy Algorithm for Maximization of Submodular Functions in Nearly Linear Time
    Kuhnle, Alan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [36] Submodular Maximization via Gradient Ascent: The Case of Deep Submodular Functions
    Bai, Wenruo
    Noble, William S.
    Bilmes, Jeff A.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [37] Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice— Continuous Greedy Algorithm on Median Complex —
    Takanori Maehara
    So Nakashima
    Yutaro Yamaguchi
    [J]. Mathematical Programming, 2022, 194 : 85 - 119
  • [38] Non-Submodular Maximization via the Greedy Algorithm and the Effects of Limited Information in Multi-Agent Execution
    Biggs, Benjamin
    McMahon, James
    Baldoni, Philip
    Stilwell, Daniel J.
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10118 - 10125
  • [39] Search Strategies for Multiple Landmark Detection by Submodular Maximization
    Liu, David
    Zhou, Kevin S.
    Bernhardt, Dominik
    Comaniciu, Dorin
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2831 - 2838
  • [40] Filtered Search for Submodular Maximization with Controllable Approximation Bounds
    Chen, Wenlin
    Chen, Yixin
    Weinberger, Kilian Q.
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 156 - 164