Constrained submodular maximization via greedy local search

被引:21
|
作者
Sarpatwar, Kanthi K. [1 ]
Schieber, Baruch [2 ]
Shachnai, Hadas [3 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] Technion, Comp Sci Dept, IL-3200003 Haifa, Israel
基金
美国国家科学基金会;
关键词
Submodular functions; Matroid; Knapsack; APPROXIMATIONS;
D O I
10.1016/j.orl.2018.11.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a simple combinatorial 1-e(-2)/2 approximation algorithm for maximizing a monotone submodular function subject to a knapsack and a matroid constraint. This classic problem is knownto be hard to approximate within factor better than 1 - 1/e. We extend the algorithm to yield 1-e(-(k+1))/k+1 approximation for submodular maximization subject to a single knapsack and k matroid constraints, for any fixed k > 1. Our algorithms, which combine the greedy algorithm of Khuller et al. (1999) and Sviridenko (2004) with local search, show the power of this natural framework in submodular maximization with combined constraints. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] A constrained two-stage submodular maximization
    Yang, Ruiqi
    Gu, Shuyang
    Gao, Chuangen
    Wu, Weili
    Wang, Hua
    Xu, Dachuan
    [J]. Theoretical Computer Science, 2021, 853 : 57 - 64
  • [22] Constrained Submodular Maximization: Beyond 1/e
    Ene, Alina
    Nguyen, Huy L.
    [J]. 2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2016, : 248 - 257
  • [23] A constrained two-stage submodular maximization
    Yang, Ruiqi
    Gu, Shuyang
    Gao, Chuangen
    Wu, Weili
    Wang, Hua
    Xu, Dachuan
    [J]. THEORETICAL COMPUTER SCIENCE, 2021, 853 : 57 - 64
  • [24] A Two-Stage Constrained Submodular Maximization
    Yang, Ruiqi
    Gu, Shuyang
    Gao, Chuangen
    Wu, Weili
    Wang, Hua
    Xu, Dachuan
    [J]. ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 329 - 340
  • [25] Cardinality constrained submodular maximization for random streams
    Liu, Paul
    Rubinstein, Aviad
    Vondrak, Jan
    Zhao, Junyao
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [26] Parallelizing Greedy for Submodular Set Function Maximization in Matroids and Beyond
    Chekuri, Chandra
    Quanrud, Kent
    [J]. PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 78 - 89
  • [27] New performance guarantees for the greedy maximization of submodular set functions
    Laitila, Jussi
    Moilanen, Atte
    [J]. OPTIMIZATION LETTERS, 2017, 11 (04) : 655 - 665
  • [28] New performance guarantees for the greedy maximization of submodular set functions
    Jussi Laitila
    Atte Moilanen
    [J]. Optimization Letters, 2017, 11 : 655 - 665
  • [29] Guarantees for Greedy Maximization of Non-submodular Functions with Applications
    Bian, Andrew An
    Buhmann, Joachim M.
    Krause, Andreas
    Tschiatschek, Sebastian
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [30] Revisiting Modified Greedy Algorithm for Monotone Submodular Maximization with a Knapsack Constraint
    Tang, Jing
    Tang, Xueyan
    Lim, Andrew
    Han, Kai
    Li, Chongshou
    Yuan, Junsong
    [J]. PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2021, 5 (01)