Three-Dimensional Planetary Boundary Layer Parameterization for High-Resolution Mesoscale Simulations

被引:22
|
作者
Kosovic, B. [1 ]
Munoz, P. Jimenez [1 ]
Juliano, T. W. [1 ]
Martilli, A. [2 ]
Eghdami, M. [3 ]
Barros, A. P. [3 ]
Haupt, S. E. [1 ]
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[2] Ctr Invest Energet Medioambientales & Tecnol, Av Complutense 40, Madrid 28040, Spain
[3] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA
来源
NAWEA WINDTECH 2019 | 2020年 / 1452卷
基金
美国国家科学基金会; 美国能源部;
关键词
TURBULENCE CLOSURE-MODEL; ZONE;
D O I
10.1088/1742-6596/1452/1/012080
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind energy applications including wind resource assessment, wind power forecasting, and wind plant optimization require high-resolution mesoscale simulations. High resolution mesoscale simulations are essential for accurate characterization of atmospheric flows over heterogeneous land use and complex terrain. Under such conditions, the assumption of grid-cell homogeneity, used in one-dimensional planetary boundary layer (1D PBL) parameterizations, breaks down. However, in most numerical weather prediction (NWP) models, boundary layer turbulence is parameterized using 1D PBL parameterizations. We have therefore developed a three-dimensional (3D) PBL parameterization to better account for horizontal flow heterogeneities. We have implemented and tested the 3D PBL parameterization in the Weather Research and Forecasting (WRF) numerical weather prediction model. The new parameterization is validated using observations from the Wind Forecast Improvement 2 (WFIP 2) project and compared to 1D PBL results.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Three-dimensional structure of mesoscale eddies in the western tropical Pacific as revealed by a high-resolution ocean simulation
    WANG QingYe
    [J]. Science China Earth Sciences, 2017, 60 (09) : 1719 - 1731
  • [22] A three-dimensional fractional solution for air contaminants dispersal in the planetary boundary layer
    Sylvain, Tankou Tagne Alain
    Patrice, Ele Abiama
    Marie, Ema'a Ema'a Jean
    Pierre, Owono Ateba
    Hubert, Ben-Bolie Germain
    [J]. HELIYON, 2021, 7 (05)
  • [23] High-resolution three-dimensional probes of biomaterials and their interfaces
    Grandfield, Kathryn
    Palmquist, Anders
    Engqvist, Hakan
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1963): : 1337 - 1351
  • [24] Three-dimensional high-resolution ultrasonic imaging of the eye
    Silverman, RH
    Lizzi, FL
    Kaliscz, A
    Coleman, DJ
    [J]. MEDICAL IMAGING 2000: ULTRASONIC IMAGING AND SIGNAL PROCESSING, 2000, 3982 : 36 - 46
  • [25] Application of High-Resolution Three-Dimensional Imaging Lidar
    Xu Guoquan
    Zhang Yifan
    Wan Jianwei
    Xu Ke
    Chen Peibo
    Ma Yanxin
    [J]. ACTA OPTICA SINICA, 2021, 41 (16)
  • [26] Autofocusing method for high-resolution three-dimensional profilometry
    Hu, Xiaowei
    Wang, Guijin
    Hyun, Jae-Sang
    Zhang, Yujin
    Yang, Huazhong
    Zhang, Song
    [J]. OPTICS LETTERS, 2020, 45 (02) : 375 - 378
  • [27] Autofocusing method for high-resolution three-dimensional profilometry
    Hu, Xiaowei
    Wang, Guijin
    Hyun, Jae-Sang
    Zhang, Yujin
    Yang, Huazhong
    Zhang, Song
    [J]. Optics Letters, 2020, 45 (02): : 375 - 378
  • [28] High-resolution confocal imaging and three-dimensional rendering
    Liu, YC
    Chiang, AS
    [J]. METHODS, 2003, 30 (01) : 86 - 93
  • [29] On the Predictability of Mesoscale Convective Systems: Three-Dimensional Simulations
    Wandishin, Matthew S.
    Stensrud, David J.
    Mullen, Steven L.
    Wicker, Louis J.
    [J]. MONTHLY WEATHER REVIEW, 2010, 138 (03) : 863 - 885
  • [30] High-resolution three-dimensional active imaging with uniform distance resolution
    Zhang, Xiuda
    Wu, Yulin
    Chen, Huifang
    Yan, Huimin
    [J]. OPTICS COMMUNICATIONS, 2014, 312 : 47 - 51