PathCNN: interpretable convolutional neural networks for survival prediction and pathway analysis applied to glioblastoma

被引:22
|
作者
Oh, Jung Hun [1 ]
Choi, Wookjin [2 ]
Ko, Euiseong [3 ]
Kang, Mingon [3 ]
Tannenbaum, Allen [4 ,5 ]
Deasy, Joseph O. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
[2] Virginia State Univ, Dept Comp Sci, Petersburg, VA 23806 USA
[3] Univ Nevada, Dept Comp Sci, Las Vegas, NV 89154 USA
[4] SUNY Stony Brook, Dept Comp Sci, New York, NY 11794 USA
[5] SUNY Stony Brook, Dept Appl Math & Stat, New York, NY 11794 USA
基金
美国国家卫生研究院;
关键词
RNA;
D O I
10.1093/bioinformatics/btab285
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Convolutional neural networks (CNNs) have achieved great success in the areas of image processing and computer vision, handling grid-structured inputs and efficiently capturing local dependencies through multiple levels of abstraction. However, a lack of interpretability remains a key barrier to the adoption of deep neural networks, particularly in predictive modeling of disease outcomes. Moreover, because biological array data are generally represented in a non-grid structured format, CNNs cannot be applied directly. Results: To address these issues, we propose a novel method, called PathCNN, that constructs an interpretable CNN model on integrated multi-omics data using a newly defined pathway image. PathCNN showed promising predictive performance in differentiating between long-term survival (LTS) and non-LTS when applied to glioblastoma multiforme (GBM). The adoption of a visualization tool coupled with statistical analysis enabled the identification of plausible pathways associated with survival in GBM. In summary, PathCNN demonstrates that CNNs can be effectively applied to multi-omics data in an interpretable manner, resulting in promising predictive power while identifying key biological correlates of disease.
引用
收藏
页码:I443 / I450
页数:8
相关论文
共 50 条
  • [1] Interpretable Convolutional Neural Networks
    Zhang, Quanshi
    Wu, Ying Nian
    Zhu, Song-Chun
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8827 - 8836
  • [2] SpliceRover: interpretable convolutional neural networks for improved splice site prediction
    Zuallaert, Jasper
    Godin, Frederic
    Kim, Mijung
    Soete, Arne
    Saeys, Yvan
    De Neve, Wesley
    [J]. BIOINFORMATICS, 2018, 34 (24) : 4180 - 4188
  • [3] Interpretable Convolutional Neural Networks for Effective Translation Initiation Site Prediction
    Zuallaert, Jasper
    Kim, Mijung
    Saeys, Yvan
    De Neve, Wesley
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 1233 - 1237
  • [4] Interpretable Compositional Convolutional Neural Networks
    Shen, Wen
    Wei, Zhihua
    Huang, Shikun
    Zhang, Binbin
    Fan, Jiaqi
    Zhao, Ping
    Zhang, Quanshi
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2971 - 2978
  • [5] Simplified, interpretable graph convolutional neural networks for small molecule activity prediction
    Weber, Jeffrey K.
    Morrone, Joseph A.
    Bagchi, Sugato
    Pabon, Jan D. Estrada
    Kang, Seung-gu
    Zhang, Leili
    Cornell, Wendy D.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (05) : 391 - 404
  • [6] Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
    Xie, Tian
    Grossman, Jeffrey C.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (14)
  • [7] Simplified, interpretable graph convolutional neural networks for small molecule activity prediction
    Jeffrey K. Weber
    Joseph A. Morrone
    Sugato Bagchi
    Jan D. Estrada Pabon
    Seung-gu Kang
    Leili Zhang
    Wendy D. Cornell
    [J]. Journal of Computer-Aided Molecular Design, 2022, 36 : 391 - 404
  • [8] Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction
    Seo, Sungyong
    Huang, Jing
    Yang, Hao
    Liu, Yan
    [J]. PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), 2017, : 297 - 305
  • [9] DEEP CONVOLUTIONAL NEURAL NETWORKS FOR INTERPRETABLE ANALYSIS OF EEG SLEEP STAGE SCORING
    Vilamala, Albert
    Madsen, Kristoffer H.
    Hansen, Lars K.
    [J]. 2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [10] E pluribus unum interpretable convolutional neural networks
    George Dimas
    Eirini Cholopoulou
    Dimitris K. Iakovidis
    [J]. Scientific Reports, 13