Interpretable Convolutional Neural Networks

被引:431
|
作者
Zhang, Quanshi [1 ]
Wu, Ying Nian [1 ]
Zhu, Song-Chun [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
关键词
D O I
10.1109/CVPR.2018.00920
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a method to modify a traditional convolutional neural network (CNN) into an interpretable CNN, in order to clarify knowledge representations in high cony-layers of the CNN. In an interpretable CNN, each filter in a high cony-layer represents a specific object part. Our interpretable CNNs use the same training data as ordinary CNNs without a need for any annotations of object parts or textures for supervision. The interpretable CNN automatically assigns each filter in a high cony-layer with an object part during the learning process. We can apply our method to different types of CNNs with various structures. The explicit knowledge representation in an interpretable CNN can help people understand the logic inside a CNN, i.e. what patterns are memorized by the CNN for prediction. Experiments have shown that filters in an interpretable CNN are more semantically meaningful than those in a traditional CNN. The code is available at https://gChub, com/zqs1022/inteipretableCNN.
引用
收藏
页码:8827 / 8836
页数:10
相关论文
共 50 条
  • [1] Interpretable Compositional Convolutional Neural Networks
    Shen, Wen
    Wei, Zhihua
    Huang, Shikun
    Zhang, Binbin
    Fan, Jiaqi
    Zhao, Ping
    Zhang, Quanshi
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2971 - 2978
  • [2] E pluribus unum interpretable convolutional neural networks
    George Dimas
    Eirini Cholopoulou
    Dimitris K. Iakovidis
    [J]. Scientific Reports, 13
  • [3] Interpretable convolutional neural networks via feedforward design
    Kuo, C-C. Jay
    Zhang, Min
    Li, Siyang
    Duan, Jiali
    Chen, Yueru
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 60 : 346 - 359
  • [4] E pluribus unum interpretable convolutional neural networks
    Dimas, George
    Cholopoulou, Eirini
    Iakovidis, Dimitris K.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Interpretable and Accurate Convolutional Neural Networks for Human Activity Recognition
    Kim, Eunji
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (11) : 7190 - 7198
  • [6] SpliceRover: interpretable convolutional neural networks for improved splice site prediction
    Zuallaert, Jasper
    Godin, Frederic
    Kim, Mijung
    Soete, Arne
    Saeys, Yvan
    De Neve, Wesley
    [J]. BIOINFORMATICS, 2018, 34 (24) : 4180 - 4188
  • [7] Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks
    Wagner, Joerg
    Koehler, Jan Mathias
    Gindele, Tobias
    Hetzel, Leon
    Wiedemer, Jakob Thaddaeus
    Behnke, Sven
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9089 - 9099
  • [8] Interpretable Deep Convolutional Neural Networks via Meta-learning
    Liu, Xuan
    Wang, Xiaoguang
    Matwin, Stan
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [9] Interpretable Convolutional Neural Networks for Effective Translation Initiation Site Prediction
    Zuallaert, Jasper
    Kim, Mijung
    Saeys, Yvan
    De Neve, Wesley
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 1233 - 1237
  • [10] DEEP CONVOLUTIONAL NEURAL NETWORKS FOR INTERPRETABLE ANALYSIS OF EEG SLEEP STAGE SCORING
    Vilamala, Albert
    Madsen, Kristoffer H.
    Hansen, Lars K.
    [J]. 2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,