DEEP CONVOLUTIONAL NEURAL NETWORKS FOR INTERPRETABLE ANALYSIS OF EEG SLEEP STAGE SCORING

被引:0
|
作者
Vilamala, Albert [1 ]
Madsen, Kristoffer H. [1 ,2 ]
Hansen, Lars K. [1 ]
机构
[1] Tech Univ Denmark, Lyngby, Denmark
[2] Danish Res Ctr Magnet Resonance, Hvidovre, Denmark
关键词
Convolutional Neural Networks; Transfer Learning; Sleep Stage Scoring; Multitaper Spectral Analysis;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sleep studies are important for diagnosing sleep disorders such as insomnia, narcolepsy or sleep apnea. They rely on manual scoring of sleep stages from raw polisomnography signals, which is a tedious visual task requiring the workload of highly trained professionals. Consequently, research efforts to purse for an automatic stage scoring based on machine learning techniques have been carried out over the last years. In this work, we resort to multitaper spectral analysis to create visually interpretable images of sleep patterns from EEG signals as inputs to a deep convolutional network trained to solve visual recognition tasks. As a working example of transfer learning, a system able to accurately classify sleep stages in new unseen patients is presented. Evaluations in a widely-used publicly available dataset favourably compare to state-of-the-art results, while providing a framework for visual interpretation of outcomes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Convolutional neural networks for sleep stage scoring on a two-channel EEG signal
    Fernandez-Blanco, Enrique
    Rivero, Daniel
    Pazos, Alejandro
    [J]. SOFT COMPUTING, 2020, 24 (06) : 4067 - 4079
  • [2] Convolutional neural networks for sleep stage scoring on a two-channel EEG signal
    Enrique Fernandez-Blanco
    Daniel Rivero
    Alejandro Pazos
    [J]. Soft Computing, 2020, 24 : 4067 - 4079
  • [3] Automatic Sleep Scoring Using Intrinsic Mode Based on Interpretable Deep Neural Networks
    Baek, Jaewoo
    Lee, Choongseop
    Yu, Hyunsoo
    Baek, Suwhan
    Lee, Seokmin
    Lee, Seungmin
    Park, Cheolsoo
    [J]. IEEE ACCESS, 2022, 10 : 36895 - 36906
  • [4] Automatic human sleep stage scoring using Deep Neural Networks
    Malafeev, A.
    Laptev, D.
    Bauer, S.
    Omlin, X.
    Wierzbicka, A.
    Wichniak, A.
    Jernajczyk, W.
    Riener, R.
    Buhmann, J.
    Achermann, P.
    [J]. JOURNAL OF SLEEP RESEARCH, 2018, 27
  • [5] Automatic Human Sleep Stage Scoring Using Deep Neural Networks
    Malafeev, Alexander
    Laptev, Dmitry
    Bauer, Stefan
    Omlin, Ximena
    Wierzbicka, Aleksandra
    Wichniak, Adam
    Jernajczyk, Wojciech
    Riener, Robert
    Buhmann, Joachim
    Achermann, Peter
    [J]. FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [6] Automatic Human Sleep Stage Scoring Using Deep Neural Networks
    Malafeev, Alexander
    Laptev, Dmitry
    Bauer, Stefan
    Omlin, Ximena
    Wierzbicka, Aleksandra
    Wichniak, Adam
    Jernajczyk, Wojciech
    Riener, Robert
    Buhmann, Joachim
    Achermann, Peter
    [J]. NEUROPSYCHOBIOLOGY, 2018, 77 (03) : 136 - 136
  • [7] A convolutional neural network for sleep stage scoring from raw single-channel EEG
    Sors, Arnaud
    Bonnet, Stephane
    Mirek, Sebastien
    Vercueil, Laurent
    Payen, Jean-Francois
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 42 : 107 - 114
  • [8] Automated sleep stage scoring of the Sleep Heart Health Study using deep neural networks
    Zhang, Linda
    Fabbri, Daniel
    Upender, Raghu
    Kent, David
    [J]. SLEEP, 2019, 42 (11)
  • [9] Interpretable Convolutional Neural Networks
    Zhang, Quanshi
    Wu, Ying Nian
    Zhu, Song-Chun
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8827 - 8836
  • [10] Sleep stage scoring using EMD and neural networks
    Caseiro, P.
    Freire, L.
    Andrade, A.
    [J]. JOURNAL OF SLEEP RESEARCH, 2012, 21 : 203 - 203