Galois correspondence on linear codes over finite chain rings

被引:2
|
作者
Tabue, Alexandre Fotue [1 ]
Martinez-Moro, Edgar [2 ]
Mouaha, Christophe [3 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Math, Yaounde, Cameroon
[2] Univ Valladolid, Inst Math, Castilla, Spain
[3] Univ Yaounde I, Higher Teachers Training Coll Yaounde, Dept Math, Yaounde, Cameroon
关键词
Finite chain rings; Galois correspondence; Galois-subring subcode; CYCLIC CODES;
D O I
10.1016/j.disc.2019.111653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S vertical bar T be a Galois extension of finite chain rings and consider H as its group of ring-automorphisms fixing the elements in T. In this paper we determine the stabilizer under such a group of any S-linear code. Using the so called Galois interior a correspondence between subgroups of H and a set of S-linear subcodes of B is determined. Some improvements of upper and lower bounds for the rank of the Galois-subring subcode and trace code are derived from this construction. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] On cyclic codes over Galois rings
    Kaur, Jasbir
    Dutt, Sucheta
    Sehmi, Ranjeet
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 280 : 156 - 161
  • [32] GALOIS LCD CODES OVER RINGS
    Liu, Zihui
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (01) : 91 - 104
  • [33] Generalized Gaussian Numbers Related to Linear Codes over Galois Rings
    Salturk, Esengul
    Siap, Irfan
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2012, 5 (02): : 250 - 259
  • [34] Critical Problem for codes over finite chain rings
    Imamura, Koji
    Shiromoto, Keisuke
    [J]. Finite Fields and their Applications, 2021, 76
  • [35] Cyclic and negacyclic codes over finite chain rings
    Dinh, HQ
    López-Permouth, SR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1728 - 1744
  • [37] Left dihedral codes over finite chain rings
    Aghili, H.
    Sobhani, R.
    [J]. DISCRETE MATHEMATICS, 2022, 345 (04)
  • [38] LCP of constacyclic codes over finite chain rings
    Ridhima Thakral
    Sucheta Dutt
    Ranjeet Sehmi
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 1989 - 2001
  • [39] Quantum codes over a class of finite chain rings
    [J]. 1600, Rinton Press Inc. (16): : 1 - 2
  • [40] Contraction of cyclic codes over finite chain rings
    Tabue, Alexandre Fotue
    Mouaha, Christophe
    [J]. DISCRETE MATHEMATICS, 2018, 341 (06) : 1722 - 1731