Errors-in-variables identification of dynamic systems in general cases

被引:4
|
作者
Zhang, E. [1 ]
Pintelon, R. [2 ]
机构
[1] Zhengzhou Univ, Dept Mech Engn, Sci Rd 100, Zhengzhou 450052, Peoples R China
[2] Vrije Univ Brussel, Dept ELEC, Pl Laan 2, B-1050 Brussels, Belgium
来源
IFAC PAPERSONLINE | 2015年 / 48卷 / 28期
关键词
System identification; errors-in-variables; frequency domain; identifiability; nonminimum phase systems; unstable system;
D O I
10.1016/j.ifacol.2015.12.145
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the identification of dynamic systems from noisy input-output observations where the noise free input is not parameterized. By extending the previous work Zhang et al. (2013), the present work aims to treat, the errors in-variable identification in more general cases, including correlated input-output noises, nonminimum phase or unstable linear dynamic system. It is shown by simulated examples that consistent identification can be obtained for the parameters of the plant model and the covariance II matrix of the input-output noises in these unconventional setups. (C) 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:309 / 313
页数:5
相关论文
共 50 条
  • [41] Identification of nonlinear errors-in-variables models
    Vajk, I
    Hetthéssy, J
    [J]. AUTOMATICA, 2003, 39 (12) : 2099 - 2107
  • [42] Errors-in-variables methods in system identification
    Soderstrom, Torsten
    [J]. AUTOMATICA, 2007, 43 (06) : 939 - 958
  • [43] System identification for the errors-in-variables problem
    Soderstrom, Torsten
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2012, 34 (07) : 780 - 792
  • [44] Convergence of bias-eliminating least squares methods for identification of dynamic errors-in-variables systems
    Soderstrom, Torsten
    Hong, Mei
    Zheng, Wei Xing
    [J]. 2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 4263 - 4268
  • [45] A bias correction method for identification of linear dynamic errors-in-variables models
    Zheng, WX
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (07) : 1142 - 1147
  • [46] Identification of Wiener Systems with Process Noise is a Nonlinear Errors-in-Variables Problem
    Wahlberg, Bo
    Welsh, James
    Ljung, Lennart
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3328 - 3333
  • [47] Finite record effects of the errors-in-variables estimator for linear dynamic systems
    Barbe, Kurt
    Pintelon, Rik
    Vandersteen, Gerd
    [J]. I2MTC: 2009 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3, 2009, : 1484 - 1489
  • [48] Finite Record Effects of the Errors-in-Variables Estimator for Linear Dynamic Systems
    Barbe, Kurt
    Pintelon, Rik
    Vandersteen, Gerd
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (02) : 642 - 654
  • [49] Robust identification for nonlinear errors-in-variables systems using the EM algorithm
    Guo, F.
    Hariprasad, K.
    Huang, B.
    Ding, Y. S.
    [J]. JOURNAL OF PROCESS CONTROL, 2017, 54 : 129 - 137
  • [50] Set-membership errors-in-variables identification of MIMO linear systems
    Cerone, Vito
    Razza, Valentino
    Regruto, Diego
    [J]. AUTOMATICA, 2018, 90 : 25 - 37