Convergence of bias-eliminating least squares methods for identification of dynamic errors-in-variables systems

被引:0
|
作者
Soderstrom, Torsten [1 ]
Hong, Mei [1 ]
Zheng, Wei Xing [1 ]
机构
[1] Univ Uppsala, Dept Informat Technol, Div Syst & Control, SE-75105 Uppsala, Sweden
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of dynamic errors-in-variable identification is studied in this paper. We investigate asymptotic convergence properties of the previous bias-eliminating algorithms. We first derive an error dynamic equation for the bias-eliminating parameter estimates. We then show that the asymptotic convergence of the bias-eliminating algorithms is basically determined by the eigenvalue of the largest magnitude of a system matrix in the estimation error dynamic equation. Moreover, the bias-eliminating algorithms possess desired convergence when all the eigenvalues of the system matrix in the estimation error dynamic equation fall strictly inside the unit circle. Given possible divergence of the iteration-type bias-eliminating algorithms under very low SNR (signal-to-noise ratio) values at the system input and output, we re-formulate the bias-elimination problem as a minimization problem associated with a concentrated loss function and develop a variable projection algorithm to efficiently solve the resulting minimization problem. Finally, we illustrate and verify the theoretical results through stochastic simulations.
引用
收藏
页码:4263 / 4268
页数:6
相关论文
共 50 条
  • [1] A simplified form of the bias-eliminating least squares method for errors-in-variables identification
    Hong, Mei
    Soderstrom, Torsten
    Zheng, Wei Xing
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (09) : 1754 - 1756
  • [2] Accuracy analysis of bias-eliminating least squares estimates for errors-in-variables systems
    Hong, Mei
    Soederstroem, Torsten
    Zheng, Wei Xing
    [J]. AUTOMATICA, 2007, 43 (09) : 1590 - 1596
  • [3] Convergence properties of bias-eliminating algorithms for errors-in-variables identification
    Söderström, T
    Hong, M
    Zheng, WX
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2005, 19 (09) : 703 - 722
  • [5] Relations between Bias-Eliminating Least Squares, the Frisch scheme and Extended Compensated Least Squares methods for identifying errors-in-variables systems
    Hong, Mei
    Soderstrom, Torsten
    [J]. AUTOMATICA, 2009, 45 (01) : 277 - 282
  • [6] Bias-compensated least squares and fuzzy PSO based hierarchical identification of errors-in-variables Wiener systems
    Zong, Tiancheng
    Li, Junhong
    Lu, Guoping
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (03) : 633 - 651
  • [7] Bias and covariance of the least squares estimate in a structured errors-in-variables problem
    Carapia, Gustavo Quintana
    Markovsky, Ivan
    Pintelon, Rik
    Csurcsia, Peter Zoltan
    Verbeke, Dieter
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [8] Total least squares and errors-in-variables modeling
    Van Huffel, Sabine
    Markovsky, Ivan
    Vaccaro, Richard J.
    Soderstrom, Torsten
    [J]. SIGNAL PROCESSING, 2007, 87 (10) : 2281 - 2282
  • [9] Total least squares and errors-in-variables modeling
    Van Huffel, Sabine
    Cheng, Chi-Lun
    Mastronardi, Nicola
    Paige, Chris
    Kukush, Alexander
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (02) : 1076 - 1079
  • [10] Correlation Analysis-based Stochastic Gradient and Least Squares Identification Methods for Errors-in-variables Systems Using the Multiinnovation
    Fan, Shujun
    Xu, Ling
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2021, 19 (01) : 289 - 300