Contrast-Independent Curvilinear Structure Detection in Biomedical Images

被引:41
|
作者
Obara, Boguslaw [1 ,2 ]
Fricker, Mark [3 ]
Gavaghan, David [4 ]
Grau, Vicente [5 ]
机构
[1] Univ Oxford, Oxford E Res Ctr, Oxford OX1 3QG, England
[2] Oxford Ctr Integrat Syst Biol, Oxford OX1 3QG, England
[3] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
[4] Oxford Ctr Integrat Syst Biol, Dept Comp Sci, Oxford OX1 3QU, England
[5] Univ Oxford, Inst Biomed Engn, Dept Engn Sci, Oxford OX1 3QG, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Bioimage informatics; curvilinear structure; live-wire tracing; phase congruency tensor (PCT); FLUORESCENCE MICROSCOPY IMAGES; RETINAL IMAGES; VESSEL DETECTION; MATCHED-FILTER; BLOOD-VESSELS; ENHANCEMENT; FEATURES; DESIGN; SPACE;
D O I
10.1109/TIP.2012.2185938
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many biomedical applications require detection of curvilinear structures in images and would benefit from automatic or semiautomatic segmentation to allow high-throughput measurements. Here, we propose a contrast-independent approach to identify curvilinear structures based on oriented phase congruency, i.e., the phase congruency tensor (PCT). We show that the proposed method is largely insensitive to intensity variations along the curve and provides successful detection within noisy regions. The performance of the PCT is evaluated by comparing it with state-of-the-art intensity-based approaches on both synthetic and real biological images.
引用
收藏
页码:2572 / 2581
页数:10
相关论文
共 50 条
  • [41] UOLO - Automatic Object Detection and Segmentation in Biomedical Images
    Araujo, Teresa
    Aresta, Guilherme
    Galdran, Adrian
    Costa, Pedro
    Mendonca, Ana Maria
    Campilho, Aurelio
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018, 2018, 11045 : 165 - 173
  • [42] Unsupervised Structure Detection in Biomedical Data
    Vogt, Julia E.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (04) : 753 - 760
  • [43] Contrast adaptation and the spatial structure of natural images
    Webster, MA
    Miyahara, E
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (09) : 2355 - 2366
  • [44] CONTRAST REVERSAL IN CRYSTAL-STRUCTURE IMAGES
    HORIUCHI, S
    JOURNAL OF ELECTRON MICROSCOPY, 1982, 31 (03): : 311 - 311
  • [45] Contrast adaptation and the spatial structure of natural images
    Webster, M. A.
    MacLin, H.
    Rees, A. L.
    Raker, V. E.
    PERCEPTION, 1996, 25 : 47 - 47
  • [46] Spatial structure, phase, and the contrast of natural images
    Rideaux, Reuben
    West, Rebecca K.
    Wallis, Thomas S. A.
    Bex, Peter J.
    Mattingley, Jason B.
    Harrison, William J.
    JOURNAL OF VISION, 2022, 22 (01):
  • [47] The relationship between curvilinear structure enhancement and ridge detection methods
    Alhasson, Haifa F.
    Willcocks, Chris G.
    Alharbi, Shuaa S.
    Kasim, Adetayo
    Obara, Boguslaw
    VISUAL COMPUTER, 2021, 37 (08): : 2263 - 2283
  • [48] The relationship between curvilinear structure enhancement and ridge detection methods
    Haifa F. Alhasson
    Chris G. Willcocks
    Shuaa S. Alharbi
    Adetayo Kasim
    Boguslaw Obara
    The Visual Computer, 2021, 37 : 2263 - 2283
  • [49] Removal of curvilinear structure from mammograms to improve mass detection
    Yates, K
    Evans, C
    Brady, M
    DIGITAL MAMMOGRAPHY, PROCEEDINGS, 2003, : 394 - 398
  • [50] A fast level set method for segmentation of low contrast noisy biomedical images
    Deng, JW
    Tsui, HT
    PATTERN RECOGNITION LETTERS, 2002, 23 (1-3) : 161 - 169