Contrast-Independent Curvilinear Structure Detection in Biomedical Images

被引:41
|
作者
Obara, Boguslaw [1 ,2 ]
Fricker, Mark [3 ]
Gavaghan, David [4 ]
Grau, Vicente [5 ]
机构
[1] Univ Oxford, Oxford E Res Ctr, Oxford OX1 3QG, England
[2] Oxford Ctr Integrat Syst Biol, Oxford OX1 3QG, England
[3] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
[4] Oxford Ctr Integrat Syst Biol, Dept Comp Sci, Oxford OX1 3QU, England
[5] Univ Oxford, Inst Biomed Engn, Dept Engn Sci, Oxford OX1 3QG, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Bioimage informatics; curvilinear structure; live-wire tracing; phase congruency tensor (PCT); FLUORESCENCE MICROSCOPY IMAGES; RETINAL IMAGES; VESSEL DETECTION; MATCHED-FILTER; BLOOD-VESSELS; ENHANCEMENT; FEATURES; DESIGN; SPACE;
D O I
10.1109/TIP.2012.2185938
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many biomedical applications require detection of curvilinear structures in images and would benefit from automatic or semiautomatic segmentation to allow high-throughput measurements. Here, we propose a contrast-independent approach to identify curvilinear structures based on oriented phase congruency, i.e., the phase congruency tensor (PCT). We show that the proposed method is largely insensitive to intensity variations along the curve and provides successful detection within noisy regions. The performance of the PCT is evaluated by comparing it with state-of-the-art intensity-based approaches on both synthetic and real biological images.
引用
收藏
页码:2572 / 2581
页数:10
相关论文
共 50 条
  • [31] A Contrast Independent Algorithm for Adaptive Binarization of Degraded Document Images
    Valizadeh, M.
    Komeili, M.
    Armanfard, N.
    Kabir, E.
    2009 14TH INTERNATIONAL COMPUTER CONFERENCE, 2009, : 127 - 132
  • [32] DETECTION AND RECOGNITION OF LOW-CONTRAST IMAGES
    STURGE, JM
    PHOTOGRAPHIC SCIENCE AND ENGINEERING, 1962, 6 (03): : 156 - 158
  • [33] Detection of low contrast features in SAR images
    Nicolas, Ken, 1600, (01):
  • [34] A Simple and Efficient Arrowhead Detection Technique in Biomedical Images
    Santosh, K. C.
    Alam, Naved
    Roy, Partha Pratim
    Wendling, Laurent
    Antani, Sameer
    Thoma, George R.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2016, 30 (05)
  • [35] An independent component analysis-based filter design for defect detection in low-contrast surface images
    Tsai, Du-Ming
    Lin, Ping-Chieh
    Lu, Chi-He
    PATTERN RECOGNITION, 2006, 39 (09) : 1679 - 1694
  • [36] Blood Detection in Biomedical Images using a Software Analysis
    Sulik, Lukas
    Krejcar, Ondrej
    IFAC PAPERSONLINE, 2015, 48 (04): : 362 - 367
  • [37] A Block Based Forgery Detection System on Biomedical Images
    Gurunlu, Bilgehan
    Ozturk, Serkan
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [38] Automatic Detection of Arrow Annotation Overlays in Biomedical Images
    Cheng, Beibei
    Stanley, R. Joe
    De, Soumya
    Antani, Sameer
    Thoma, George R.
    INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2011, 6 (04) : 23 - 41
  • [39] Arrow detection in biomedical images using sequential classifier
    Santosh, K. C.
    Roy, Partha Pratim
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (06) : 993 - 1006
  • [40] Arrow detection in biomedical images using sequential classifier
    K. C. Santosh
    Partha Pratim Roy
    International Journal of Machine Learning and Cybernetics, 2018, 9 : 993 - 1006