Robust local polynomial regression for dependent data

被引:6
|
作者
Jiang, JC [1 ]
Mack, YP
机构
[1] Beijing Univ, Dept Probabil & Stat, Beijing 100871, Peoples R China
[2] Univ Calif Davis, Div Stat, Davis, CA 95616 USA
关键词
data-driven; local M-estimator; local polynomial regression; mixing condition; one-step; robustness;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-j, Y-j)(j=1)(n) be a realization of a bivariate jointly strictly stationary process. We consider a robust estimator of the regression function M(x) = E(Y/X = x) by using local polynomial regression techniques. The estimator is a local M-estimator weighted by a kernel function. Under mixing conditions satisfied by many time series models, together with other appropriate conditions, consistency and asymptotic normality results are established. One-step local M-estimators are introduced to reduce computational burden. In addition, we give a data-driven choice for minimizing the scale factor involving the Psi -function in the asymptotic covariance expression, by drawing a parallel with the class of Huber's Psi -functions. The method is illustrated via two examples.
引用
收藏
页码:705 / 722
页数:18
相关论文
共 50 条
  • [1] Robust local polynomial regression for dependent data (vol 11, pg 705, 2001)
    Jiang, JC
    Mack, YP
    [J]. STATISTICA SINICA, 2002, 12 (02) : 662 - 662
  • [2] On the bias in local polynomial regression estimation for dependent data
    Rios, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (01): : 117 - 122
  • [3] On the bias in local polynomial regression estimation for dependent data
    Rios, R.
    [J]. Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 324 (01):
  • [4] Limit theorems for local polynomial estimation of regression for functional dependent data
    Bouanani, Oussama
    Bouzebda, Salim
    [J]. AIMS MATHEMATICS, 2024, 9 (09): : 23651 - 23691
  • [5] Local polynomial quasi-likelihood regression with truncated and dependent data
    Wang, Jiang-Feng
    Liang, Han-Ying
    Fan, Guo-Liang
    [J]. STATISTICS, 2013, 47 (04) : 744 - 761
  • [6] Data adaptive ridging in local polynomial regression
    Seifert, B
    Gasser, T
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) : 338 - 360
  • [7] Local polynomial regression with selection biased data
    Wu, CO
    [J]. STATISTICA SINICA, 2000, 10 (03) : 789 - 817
  • [8] Local polynomial regression for pooled response data
    Wang, Dewei
    Mou, Xichen
    Li, Xiang
    Huang, Xianzheng
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (04) : 814 - 837
  • [9] Penalized local polynomial regression for spatial data
    Wang, Wu
    Sun, Ying
    [J]. BIOMETRICS, 2019, 75 (04) : 1179 - 1190
  • [10] Local polynomial regression analysis of clustered data
    Chen, KN
    Jin, ZZ
    [J]. BIOMETRIKA, 2005, 92 (01) : 59 - 74