Robust local polynomial regression for dependent data

被引:6
|
作者
Jiang, JC [1 ]
Mack, YP
机构
[1] Beijing Univ, Dept Probabil & Stat, Beijing 100871, Peoples R China
[2] Univ Calif Davis, Div Stat, Davis, CA 95616 USA
关键词
data-driven; local M-estimator; local polynomial regression; mixing condition; one-step; robustness;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-j, Y-j)(j=1)(n) be a realization of a bivariate jointly strictly stationary process. We consider a robust estimator of the regression function M(x) = E(Y/X = x) by using local polynomial regression techniques. The estimator is a local M-estimator weighted by a kernel function. Under mixing conditions satisfied by many time series models, together with other appropriate conditions, consistency and asymptotic normality results are established. One-step local M-estimators are introduced to reduce computational burden. In addition, we give a data-driven choice for minimizing the scale factor involving the Psi -function in the asymptotic covariance expression, by drawing a parallel with the class of Huber's Psi -functions. The method is illustrated via two examples.
引用
收藏
页码:705 / 722
页数:18
相关论文
共 50 条
  • [21] ROBUST PROCEDURES FOR ESTIMATING POLYNOMIAL REGRESSION
    ATWOOD, CL
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1971, 66 (336) : 855 - 860
  • [22] A NOTE ON ROBUST DESIGNS FOR POLYNOMIAL REGRESSION
    DETTE, H
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1991, 28 (02) : 223 - 232
  • [23] Robust designs for approximately polynomial regression
    Liu, SX
    Wiens, DP
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 64 (02) : 369 - 381
  • [24] Asymptotic properties of local polynomial regression with missing data and correlated errors
    Perez-Gonzalez, A.
    Vilar-Fernandez, J. M.
    Gonzalez-Manteiga, W.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (01) : 85 - 109
  • [25] Asymptotic properties of local polynomial regression with missing data and correlated errors
    A. Pérez-González
    J. M. Vilar-Fernández
    W. González-Manteiga
    [J]. Annals of the Institute of Statistical Mathematics, 2009, 61 : 85 - 109
  • [26] Local linear quantile regression with truncated and dependent data
    Wang, Jiang-Feng
    Ma, Wei-Min
    Fan, Guo-Liang
    Wen, Li-Min
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 96 : 232 - 240
  • [27] LOCAL LINEAR QUANTILE REGRESSION WITH DEPENDENT CENSORED DATA
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    [J]. STATISTICA SINICA, 2009, 19 (04) : 1621 - 1640
  • [28] Local linear estimate of the nonparametric robust regression in functional data
    Belarbi, Faiza
    Chemikh, Souheyla
    Laksaci, Ali
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 134 : 128 - 133
  • [29] Local asymptotics for polynomial spline regression
    Huang, JHZ
    [J]. ANNALS OF STATISTICS, 2003, 31 (05): : 1600 - 1635
  • [30] Local polynomial regression with an ordinal covariate
    He, Zonglin
    Opsomer, Jean D.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2015, 27 (04) : 516 - 531