Penalized local polynomial regression for spatial data

被引:9
|
作者
Wang, Wu [1 ]
Sun, Ying [1 ]
机构
[1] KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
关键词
fine particular matter; fused lasso; spatial regression; spatially varying coefficient model; VARYING COEFFICIENT MODELS; CONFIDENCE-INTERVALS; P-VALUES; INFERENCE; POLLUTION; SELECTION;
D O I
10.1111/biom.13077
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
When performing spatial regression analysis in environmental data applications, spatial heterogeneity in the regression coefficients is often observed. Spatially varying coefficient models, including geographically weighted regression and spline models, are standard tools for quantifying such heterogeneity. In this paper, we propose a spatially varying coefficient model that represents the spatially varying parameters as a mixture of local polynomials at selected locations. The local polynomial parameters have attractive interpretations, indicating various types of spatial heterogeneity. Instead of estimating the spatially varying regression coefficients directly, we develop a penalized least squares regression procedure for the local polynomial parameter estimation, which both shrinks the parameter estimation and penalizes the differences among parameters that are associated with neighboring locations. We develop confidence intervals for the varying regression coefficients and prediction intervals for the response. We apply the proposed method to characterize the spatially varying association between particulate matter concentrations (PM2.5) and pollutant gases related to the secondary aerosol formulation in China. The identified regression coefficients show distinct spatial patterns for nitrogen dioxide, sulfur dioxide, and carbon monoxide during different seasons.
引用
收藏
页码:1179 / 1190
页数:12
相关论文
共 50 条
  • [1] LOCAL POLYNOMIAL AND PENALIZED TRIGONOMETRIC SERIES REGRESSION
    Huang, Li-Shan
    Chan, Kung-Sik
    [J]. STATISTICA SINICA, 2014, 24 (03) : 1215 - 1238
  • [2] Local polynomial trend regression for spatial data on Rd
    Kurisu, Daisuke
    Matsuda, Yasumasa
    [J]. BERNOULLI, 2024, 30 (04) : 2770 - 2794
  • [3] A weighted polynomial regression method for local fitting of spatial data
    Sclocco T.
    Di Marzio M.
    [J]. Statistical Methods and Applications, 2004, 13 (3) : 315 - 325
  • [4] Penalized quantile regression for spatial panel data with fixed effects
    Zhang, Yuanqing
    Jiang, Jiayuan
    Feng, Yaqin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (04) : 1287 - 1299
  • [5] Data adaptive ridging in local polynomial regression
    Seifert, B
    Gasser, T
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) : 338 - 360
  • [6] Local polynomial regression with selection biased data
    Wu, CO
    [J]. STATISTICA SINICA, 2000, 10 (03) : 789 - 817
  • [7] Local polynomial regression for pooled response data
    Wang, Dewei
    Mou, Xichen
    Li, Xiang
    Huang, Xianzheng
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (04) : 814 - 837
  • [8] Robust local polynomial regression for dependent data
    Jiang, JC
    Mack, YP
    [J]. STATISTICA SINICA, 2001, 11 (03) : 705 - 722
  • [9] Local polynomial regression analysis of clustered data
    Chen, KN
    Jin, ZZ
    [J]. BIOMETRIKA, 2005, 92 (01) : 59 - 74
  • [10] On the bias in local polynomial regression estimation for dependent data
    Rios, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (01): : 117 - 122