Regularization in a functional reproducing kernel Hilbert space

被引:7
|
作者
Wang, Rui [1 ]
Xu, Yuesheng [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
基金
美国国家科学基金会;
关键词
Regularization; Semi-discrete first kind integral equations; Functional reproducing kernel Hilbert space; Kernel; Representer theorem; INTEGRAL-EQUATIONS; COLLOCATION METHOD; RECONSTRUCTION;
D O I
10.1016/j.jco.2021.101567
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider solving a system of semi-discrete first kind integral equations with a right-hand-side being a finite dimensional vector of sampling values and propose a regularization method for the system in a functional reproducing kernel Hilbert space (FRKHS), where the linear functionals that define the semi discrete integral operator are continuous. A representer theorem for the regularization method is established, which reduces the infinite dimensional problem to a finite dimensional linear system and expresses its solution as a linear combination of the FRKHS kernel sessions. We construct specific FRKHSs and their associated kernels for reconstruction of a function from Radon data, and develop related regularization methods for the reconstruction. We present numerical results which demonstrate that the proposed regularization method outperforms either the traditional Tikhonov regularization in the L-2 space or the regularization in the classical reproducing kernel Hilbert space. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] On some problems for operators on the reproducing kernel Hilbert space
    Garayev, M. T.
    Guediri, H.
    Gurdal, M.
    Alsahli, G. M.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (11): : 2059 - 2077
  • [22] An explicit construction of a reproducing Gaussian kernel Hilbert space
    Xu, Jian-Wu
    Pokharel, Puskal P.
    Jeong, Kyu-Hwa
    Principe, Jose C.
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5431 - 5434
  • [23] Fast quantile regression in reproducing kernel Hilbert space
    Songfeng Zheng
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 568 - 588
  • [24] A New Application Of Reproducing Kernel Hilbert Space Method
    Akgul, A.
    Sakar, M. Giyas
    [J]. INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [25] Hyperellipsoidal Statistical Classifications in a Reproducing Kernel Hilbert Space
    Liang, Xun
    Ni, Zhihao
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 968 - 975
  • [26] A reproducing kernel Hilbert space approach for speech enhancement
    Gauci, Oliver
    Debono, Carl J.
    Micallef, Paul
    [J]. 2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 831 - 835
  • [27] Modelling Policies in MDPs in Reproducing Kernel Hilbert Space
    Lever, Guy
    Stafford, Ronnie
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 590 - 598
  • [28] Generalized Mahalanobis depth in the reproducing kernel Hilbert space
    Yonggang Hu
    Yong Wang
    Yi Wu
    Qiang Li
    Chenping Hou
    [J]. Statistical Papers, 2011, 52 : 511 - 522
  • [29] Step size adaptation in reproducing kernel Hilbert space
    Vishwanathan, S. V. N.
    Schraudolph, Nicol N.
    Smola, Alex J.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1107 - 1133
  • [30] THE REPRODUCING KERNEL HILBERT SPACE BASED ON WAVELET TRANSFORM
    Deng, Cai-Xia
    Li, Shuai
    Fu, Zuo-Xian
    [J]. PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 370 - 374