On complemented subspaces of non-Archimedean Kothe spaces

被引:1
|
作者
Sliwa, Wieslaw [1 ]
Ziemkowska, Agnieszka [2 ]
机构
[1] Univ Rzeszow, Fac Math & Nat Sci, Pigonia 1, PL-35310 Rzeszow, Poland
[2] Poznan Univ Tech, Inst Math, Ul Piotrowo 3A, PL-60965 Poznan, Poland
关键词
Non-Archimedean Frechet spaces; Frechet-Montel spaces; Kothe spaces; Generalized power series spaces; NUCLEAR FRECHET SPACES; POWER-SERIES SPACES; CLOSED SUBSPACES;
D O I
10.1016/j.jmaa.2018.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized power series spaces D-f (a, r) are the most known and important examples of nuclear Kothe spaces. We prove that every Kothe-Montel space (over a non-Archimedean field K) has a complemented closed subspace isomorphic to a generalized power series space D-f (a, r). It follows that every non-normable Frechet space E that is not isomorphic to the product of a Banach space and the space K-N has a closed subspace isomorphic to a generalized power series space D-f (a, r). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:401 / 412
页数:12
相关论文
共 50 条
  • [21] The invariant subspace problem for non-Archimedean Kothe spaces (vol 453, pg 1086, 2017)
    Kasprzak, Henryk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) : 1296 - 1299
  • [22] On non-archimedean Gurarii spaces
    Kakol, J.
    Kubis, W.
    Kubzdela, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 969 - 981
  • [23] On Closed Subspaces of Non-Archimedean Nuclear Fréchet Spaces with a Schauder Basis
    Wiesław Śliwa
    The Journal of Geometric Analysis, 2015, 25 : 189 - 203
  • [24] Selectors in non-Archimedean spaces
    Artico, G.
    Marconi, U.
    Moresco, R.
    Pelant, J.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) : 540 - 551
  • [25] Non-Archimedean Analytic Spaces
    Werner A.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2013, 115 (1) : 3 - 20
  • [26] NON-ARCHIMEDEAN BANACH SPACES
    PUT, MVD
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1969, 97 (03): : 309 - &
  • [27] On non-Archimedean Hilbertian spaces
    Kubzdela, Albert
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 601 - 610
  • [28] Non-Archimedean orthomodular spaces and their residual spaces
    Keller, HA
    Ochsenius, H
    Ultrametric Functional Analysis, 2005, 384 : 145 - 156
  • [29] Non-Archimedean Hilbert like spaces
    Aguayo, J.
    Nova, M.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (05) : 787 - 797
  • [30] NON-ARCHIMEDEAN ANALYTIFICATION OF ALGEBRAIC SPACES
    Conrad, Brian
    Temkin, Michael
    JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (04) : 731 - 788