Non-Archimedean Hilbert like spaces

被引:6
|
作者
Aguayo, J. [1 ]
Nova, M. [1 ]
机构
[1] Univ Catolica Santisima Concepcion, Fac Ingn, Dept Ciencias Basic, Concepcion 160, Chile
关键词
non-archimedean fields; inner products; normal complemented sub-spaces; projections; adjoint and selfadjoint operators;
D O I
10.36045/bbms/1197908895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a non-Archimedean, complete valued field. It is known that the supremum norm ||.||(infinity) on c(0) is induced by an inner product if and only if the residual class field of K is formally real. One of the main problems of this inner product is that c(0) is not orthomodular, as is any classical Hilbert space. Our goal in this work is to identify those closed subspaces of c(0) which have a normal complement. In this study we also involve projections, adjoint and self-adjoint operators.
引用
收藏
页码:787 / 797
页数:11
相关论文
共 50 条
  • [1] Embeddings of non-Archimedean Banach manifolds in non-Archimedean Banach spaces
    Lyudkovskii, SV
    RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (05) : 1097 - 1098
  • [2] On non-archimedean Gurarii spaces
    Kakol, J.
    Kubis, W.
    Kubzdela, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 969 - 981
  • [3] Selectors in non-Archimedean spaces
    Artico, G.
    Marconi, U.
    Moresco, R.
    Pelant, J.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) : 540 - 551
  • [4] Non-Archimedean Analytic Spaces
    Werner A.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2013, 115 (1) : 3 - 20
  • [5] NON-ARCHIMEDEAN BANACH SPACES
    PUT, MVD
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1969, 97 (03): : 309 - &
  • [6] On non-Archimedean Hilbertian spaces
    Kubzdela, Albert
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 601 - 610
  • [7] Non-Archimedean orthomodular spaces and their residual spaces
    Keller, HA
    Ochsenius, H
    Ultrametric Functional Analysis, 2005, 384 : 145 - 156
  • [8] Isometric embedding of ultrametric (non-Archimedean) spaces in Hilbert space and Lebesgue space
    Lemin, AJ
    P-ADIC FUNCTIONAL ANALYSIS, PROCEEDINGS, 2001, 222 : 203 - 218
  • [9] NON-ARCHIMEDEAN ANALYTIFICATION OF ALGEBRAIC SPACES
    Conrad, Brian
    Temkin, Michael
    JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (04) : 731 - 788
  • [10] NON-ARCHIMEDEAN TEICHMULLER-SPACES
    HERRLICH, F
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1987, 90 (02): : 145 - 169