Photo absorption enhancement in strained silicon nanowires: An atomistic study

被引:2
|
作者
Shiri, Daryoush [1 ,4 ]
Rabbani, M. Golam [2 ,5 ]
Qi, Jianqing [2 ]
Buin, Andrei K. [3 ,6 ]
Anantram, M. P. [2 ]
机构
[1] Univ Waterloo, Dept Phys & Astron, IQC, Waterloo, ON N2L 3G1, Canada
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[3] Univ Toronto, Dept Elect Engn, Toronto, ON M5S 2J7, Canada
[4] Chalmers, Dept Phys, SE-41296 Gothenburg, Sweden
[5] Intel Inc, Hillsboro, OR 97124 USA
[6] D&D Integrat Care Inc, Toronto, ON M5J 2H7, Canada
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; OPTICAL-PROPERTIES; ELECTRONIC BAND; HIGH-PERFORMANCE; SI NANOWIRES; SOLAR-CELLS; ARRAYS; HETEROSTRUCTURES; MODULATION; GERMANIUM;
D O I
10.1063/1.4993587
中图分类号
O59 [应用物理学];
学科分类号
摘要
The absorption spectra of silicon nanowires are calculated using semi-empirical sp(3) d(5) s* tight binding and Density Functional Theory methods. The roles of diameter, wave function symmetry, strain, and crystallographic direction in determining the absorption are discussed. We find that compressive strain can change the band edge absorption by more than one order of magnitude due to the change in wave function symmetry. In addition, photon polarization with respect to the nanowire axis significantly alters the band edge absorption. Overall, the band edge absorption of [ 110] and [100] silicon nanowires can differ by as much as three orders of magnitude. We find that compared to bulk Silicon, a strained Silicon nanowire array can absorb infrared photons (1.1 eV) approximately one hundred times better. Finally, we compare a fully numerical and a computationally efficient semi-analytical method, and find that they both yield satisfactory values of the band edge absorption. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties
    Markussen, Troels
    Jauho, Antti-Pekka
    Brandbyge, Mads
    PHYSICAL REVIEW B, 2009, 79 (03):
  • [42] Optimal design of laterally assembled hexagonal silicon nanowires for broadband absorption enhancement in ultrathin solar cells
    Shahraki, Mojtaba
    Salehi, Mohammad Reza
    Abiri, Ebrahim
    OPTICAL ENGINEERING, 2015, 54 (11)
  • [43] Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts
    Habicht, S.
    Zhao, Q. T.
    Feste, S. F.
    Knoll, L.
    Trellenkamp, S.
    Ghyselen, B.
    Mantl, S.
    NANOTECHNOLOGY, 2010, 21 (10)
  • [44] X-ray absorption spectroscopy study on nanowires and nanotubes of carbon and silicon
    College of Materials Science and Engineering, Hunan University, Changsha 410082, China
    Guang Pu Xue Yu Guang Pu Fen Xi, 2006, 3 (571-576):
  • [45] Electronic structure of silicon nanowires: A photoemission and x-ray absorption study
    Zhang, YF
    Liao, LS
    Chan, WH
    Lee, ST
    Sammynaiken, R
    Sham, TK
    PHYSICAL REVIEW B, 2000, 61 (12): : 8298 - 8305
  • [46] Advanced Strained-Silicon and Core-Shell Si/Si1-xGex Nanowires for CMOS Transport Enhancement
    Hashemi, Pouya
    Poweleit, C. D.
    Canonico, M.
    Hoyt, J. L.
    SIGE, GE, AND RELATED COMPOUNDS 4: MATERIALS, PROCESSING, AND DEVICES, 2010, 33 (06): : 687 - 698
  • [47] Stress redistribution in individual ultrathin strained silicon nanowires: a high-resolution polarized Raman study
    Tarun, Alvarado
    Hayazawa, Norihiko
    Balois, Maria Vanessa
    Kawata, Satoshi
    Reiche, Manfred
    Moutanabbir, Oussama
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [48] Atomistic study of boron clustering in silicon
    Alippi, P
    Ruggerone, P
    Colombo, L
    GETTERING AND DEFECT ENGINEERING IN SEMICONDUCTOR TECHNOLOGY, 2002, 82-84 : 163 - 169
  • [50] An atomistic simulation study of cylindrical ultrathin CU nanowires
    Kang, JW
    Hwang, HJ
    MOLECULAR SIMULATION, 2002, 28 (12) : 1021 - 1030