Photo absorption enhancement in strained silicon nanowires: An atomistic study

被引:2
|
作者
Shiri, Daryoush [1 ,4 ]
Rabbani, M. Golam [2 ,5 ]
Qi, Jianqing [2 ]
Buin, Andrei K. [3 ,6 ]
Anantram, M. P. [2 ]
机构
[1] Univ Waterloo, Dept Phys & Astron, IQC, Waterloo, ON N2L 3G1, Canada
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[3] Univ Toronto, Dept Elect Engn, Toronto, ON M5S 2J7, Canada
[4] Chalmers, Dept Phys, SE-41296 Gothenburg, Sweden
[5] Intel Inc, Hillsboro, OR 97124 USA
[6] D&D Integrat Care Inc, Toronto, ON M5J 2H7, Canada
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; OPTICAL-PROPERTIES; ELECTRONIC BAND; HIGH-PERFORMANCE; SI NANOWIRES; SOLAR-CELLS; ARRAYS; HETEROSTRUCTURES; MODULATION; GERMANIUM;
D O I
10.1063/1.4993587
中图分类号
O59 [应用物理学];
学科分类号
摘要
The absorption spectra of silicon nanowires are calculated using semi-empirical sp(3) d(5) s* tight binding and Density Functional Theory methods. The roles of diameter, wave function symmetry, strain, and crystallographic direction in determining the absorption are discussed. We find that compressive strain can change the band edge absorption by more than one order of magnitude due to the change in wave function symmetry. In addition, photon polarization with respect to the nanowire axis significantly alters the band edge absorption. Overall, the band edge absorption of [ 110] and [100] silicon nanowires can differ by as much as three orders of magnitude. We find that compared to bulk Silicon, a strained Silicon nanowire array can absorb infrared photons (1.1 eV) approximately one hundred times better. Finally, we compare a fully numerical and a computationally efficient semi-analytical method, and find that they both yield satisfactory values of the band edge absorption. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Atomistic simulations of the tensile and melting behavior of silicon nanowires
    Jing Yuhang
    Meng Qingyuan
    Zhao Wei
    JOURNAL OF SEMICONDUCTORS, 2009, 30 (06)
  • [22] Atomistic simulations of the tensile and melting behavior of silicon nanowires
    荆宇航
    孟庆元
    赵伟
    半导体学报, 2009, 30 (06) : 20 - 24
  • [23] Atomistic simulations of focused ion beam machining of strained silicon
    Guenole, J.
    Prakash, A.
    Bitzek, E.
    APPLIED SURFACE SCIENCE, 2017, 416 : 86 - 95
  • [24] Atomistic Origins of Ductility Enhancement in Metal Oxide Coated Silicon Nanowires for Li-Ion Battery Anodes
    Gao, Anthony
    Mukherjee, Sankha
    Srivastava, Ijya
    Daly, Matthew
    Singh, Chandra Veer
    ADVANCED MATERIALS INTERFACES, 2017, 4 (23):
  • [25] Atomistic study of the buckling of gold nanowires
    Olsson, Par A. T.
    Park, Harold S.
    ACTA MATERIALIA, 2011, 59 (10) : 3883 - 3894
  • [26] Theoretical calculations of mobility enhancement in strained silicon
    Dziekan, T.
    Zahn, P.
    Meded, V.
    Mirbt, S.
    PHYSICAL REVIEW B, 2007, 75 (19):
  • [27] An analytical-atomistic model for elastic behavior of silicon nanowires
    Pakzad, Sina Zare
    Esfahani, Mohammad Nasr
    Alaca, B. Erdem
    JOURNAL OF PHYSICS-MATERIALS, 2024, 7 (03):
  • [29] NiSi Nano-contacts to Strained and Unstrained Silicon Nanowires
    Habicht, S.
    Zhao, Q. T.
    Feste, S. F.
    Knoll, L.
    Trellenkamp, S.
    Bourdelle, K. K.
    Mantl, S.
    2011 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE AND MATERIALS FOR ADVANCED METALLIZATION (IITC/MAM), 2011,
  • [30] The atomistic study on the thermal expansion behaviors of nanowires
    Chang, I-Ling
    Chang, Fu-Rong
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 54 : 266 - 270