Photo absorption enhancement in strained silicon nanowires: An atomistic study

被引:2
|
作者
Shiri, Daryoush [1 ,4 ]
Rabbani, M. Golam [2 ,5 ]
Qi, Jianqing [2 ]
Buin, Andrei K. [3 ,6 ]
Anantram, M. P. [2 ]
机构
[1] Univ Waterloo, Dept Phys & Astron, IQC, Waterloo, ON N2L 3G1, Canada
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[3] Univ Toronto, Dept Elect Engn, Toronto, ON M5S 2J7, Canada
[4] Chalmers, Dept Phys, SE-41296 Gothenburg, Sweden
[5] Intel Inc, Hillsboro, OR 97124 USA
[6] D&D Integrat Care Inc, Toronto, ON M5J 2H7, Canada
基金
美国国家科学基金会;
关键词
FIELD-EFFECT TRANSISTORS; OPTICAL-PROPERTIES; ELECTRONIC BAND; HIGH-PERFORMANCE; SI NANOWIRES; SOLAR-CELLS; ARRAYS; HETEROSTRUCTURES; MODULATION; GERMANIUM;
D O I
10.1063/1.4993587
中图分类号
O59 [应用物理学];
学科分类号
摘要
The absorption spectra of silicon nanowires are calculated using semi-empirical sp(3) d(5) s* tight binding and Density Functional Theory methods. The roles of diameter, wave function symmetry, strain, and crystallographic direction in determining the absorption are discussed. We find that compressive strain can change the band edge absorption by more than one order of magnitude due to the change in wave function symmetry. In addition, photon polarization with respect to the nanowire axis significantly alters the band edge absorption. Overall, the band edge absorption of [ 110] and [100] silicon nanowires can differ by as much as three orders of magnitude. We find that compared to bulk Silicon, a strained Silicon nanowire array can absorb infrared photons (1.1 eV) approximately one hundred times better. Finally, we compare a fully numerical and a computationally efficient semi-analytical method, and find that they both yield satisfactory values of the band edge absorption. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Atomistic study of the bending properties of silicon nanowires
    Zhuo, X. R.
    Beom, H. G.
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 152 : 331 - 336
  • [2] Thermal stability of silicon nanowires:atomistic simulation study
    刘文亮
    张凯旺
    钟建新
    Chinese Physics B, 2009, 18 (07) : 2920 - 2924
  • [3] Thermal stability of silicon nanowires: atomistic simulation study
    Liu Wen-Liang
    Zhang Kai-Wang
    Zhong Jian-Xin
    CHINESE PHYSICS B, 2009, 18 (07) : 2920 - 2924
  • [4] Atomistic modeling of metallic nanowires in silicon
    Ryu, Hoon
    Lee, Sunhee
    Weber, Bent
    Mahapatra, Suddhasatta
    Hollenberg, Lloyd C. L.
    Simmons, Michelle Y.
    Klimeck, Gerhard
    NANOSCALE, 2013, 5 (18) : 8666 - 8674
  • [5] Atomistic simulation of plasticity in silicon nanowires
    Cleri, Fabrizio
    Ishida, Tadashi
    Collard, Dominique
    Fujita, Hiroyuki
    APPLIED PHYSICS LETTERS, 2010, 97 (15)
  • [6] Photoconductive response of strained silicon nanowires: A Monte Carlo study
    Shiri, Daryoush
    Verma, Amit
    Khader, Mahmoud M.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (13)
  • [7] Atomistic calculation of elastic moduli in strained silicon
    Zhu, R.
    Pan, E.
    Chung, P. W.
    Cai, X.
    Liew, K. M.
    Buldum, A.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2006, 21 (07) : 906 - 911
  • [8] Photoconductive response of strained silicon nanowires: A Monte Carlo study
    Verma, A. (Amit.Verma@tamuk.edu), 1600, American Institute of Physics Inc. (115):
  • [9] Fabrication of uniaxially strained silicon nanowires
    Feste, S. F.
    Knoch, J.
    Buca, D.
    Mantl, S.
    THIN SOLID FILMS, 2008, 517 (01) : 320 - 322
  • [10] Silicon carbide nanowires under external loads: An atomistic simulation study
    Makeev, Maxim A.
    Srivastava, Deepak
    Menon, Madhu
    PHYSICAL REVIEW B, 2006, 74 (16)