Recursion Formulas for Bernoulli Numbers

被引:0
|
作者
Kim, Aeran [1 ]
机构
[1] Private Math Acad, 1-406,23,Maebong 5 Gil, Chonju 54921, Chonbuk, South Korea
来源
THAI JOURNAL OF MATHEMATICS | 2022年 / 20卷 / 01期
关键词
Bernoulli numbers; Lucas sequence; recursion theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish simple recursion formulas for Bernoulli numbers, for instance, Sigma(n)(k=1) (4n + 2 4k) (-1)(k)2(2k-1) B-4k = n and Sigma(n)(k=0) (4n + 4 4k + 2) (-1)(k)2(2k) B4k+2 = n + 1 in Theorem 1.1. Furthermore applying a Lucas sequence V-n, we obtain Sigma(n)(k=1) (8n + 4 8k) (-1)(k)2(2k-1) B8kV4n-4k+2 = nV(4n+2) and Sigma(n)(k=0) (8n + 8 8k + 4) (-1)(k)2(2k) B8k+4V4n-4k+2 = -(n + 1)V4n+3 in Theorem 1.2.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条