LIPSCHITZ EQUIVALENCE OF TOTALLY DISCONNECTED GENERAL SIERPINSKI TRIANGLES

被引:3
|
作者
Zhu, Zhi-Yong [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shannxi, Peoples R China
关键词
Fractal; Lipschitz Equivalence; Totally Disconnected; General Sierpinski Triangle; SETS;
D O I
10.1142/S0218348X15500139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an integer n >= 2 and an ordered pair (A, B) with A subset of {k(1)alpha + k(2)beta : k(1) + k(2) <= n - 1 and k(1), k(2) is an element of N boolean OR {0}} and B subset of {k(1)alpha + k(2)beta : 2 <= k(1) + k(2) <= n and k(1), k(2) is an element of N}, where alpha = (1, 0), beta = (1/2, root 3/2). Let T := T (A, B) be unique compact set of R-2 satisfying the set equation: T = [(T + A) boolean OR (B - T)]/n. In this paper, we show that such self-similar sets which are totally disconnected are determined to within Lipschitz equivalence by their Hausdorff dimension.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] BUNDLES WITH TOTALLY DISCONNECTED STRUCTURE GROUP
    WOOD, JW
    COMMENTARII MATHEMATICI HELVETICI, 1971, 46 (02) : 257 - &
  • [42] Equivariant homology for totally disconnected groups
    Schneider, P
    JOURNAL OF ALGEBRA, 1998, 203 (01) : 50 - 68
  • [43] Chern character for totally disconnected groups
    Voigt, Christian
    MATHEMATISCHE ANNALEN, 2009, 343 (03) : 507 - 540
  • [44] EQUIVALENCE OF LIPSCHITZ STRUCTURES
    FRASER, RB
    CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (03): : 363 - &
  • [45] On the equivalence of certain statements in triangles
    Zeinal, Abasov Raghib
    LUZ, 2024, 23 (01):
  • [46] Strict self-assembly of discrete Sierpinski triangles
    Lathrop, James I.
    Lutz, Jack H.
    Summers, Scott M.
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (4-5) : 384 - 405
  • [47] Sierpinski's hierarchy and locally Lipschitz functions
    Morayne, M
    FUNDAMENTA MATHEMATICAE, 1995, 147 (01) : 73 - 82
  • [48] SURFACE CHEMISTRY Self-assembling Sierpinski triangles
    Tait, Steven L.
    Nature Chemistry, 2015, 7 (05) : 370 - 371
  • [49] Packing Biomolecules into Sierpinski Triangles with Global Organizational Chirality
    Li, Chao
    Li, Ruoning
    Xu, Zhen
    Li, Jie
    Zhang, Xue
    Li, Na
    Zhang, Yajie
    Shen, Ziyong
    Tang, Hao
    Wang, Yongfeng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (36) : 14417 - 14421
  • [50] Bandwidth Enhancement using Small Triangles on Sierpinski Fractal
    Singh, Monika
    Kumar, Navneet
    Diwari, Santanu
    Kala, Pradyot
    2013 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICSC), 2013, : 86 - 91