LIPSCHITZ EQUIVALENCE OF TOTALLY DISCONNECTED GENERAL SIERPINSKI TRIANGLES

被引:3
|
作者
Zhu, Zhi-Yong [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shannxi, Peoples R China
关键词
Fractal; Lipschitz Equivalence; Totally Disconnected; General Sierpinski Triangle; SETS;
D O I
10.1142/S0218348X15500139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an integer n >= 2 and an ordered pair (A, B) with A subset of {k(1)alpha + k(2)beta : k(1) + k(2) <= n - 1 and k(1), k(2) is an element of N boolean OR {0}} and B subset of {k(1)alpha + k(2)beta : 2 <= k(1) + k(2) <= n and k(1), k(2) is an element of N}, where alpha = (1, 0), beta = (1/2, root 3/2). Let T := T (A, B) be unique compact set of R-2 satisfying the set equation: T = [(T + A) boolean OR (B - T)]/n. In this paper, we show that such self-similar sets which are totally disconnected are determined to within Lipschitz equivalence by their Hausdorff dimension.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] THE HYPERSPACE OF TOTALLY DISCONNECTED SETS
    Escobedo, Raul
    Pellicer-Covarrubias, Patricia
    Sanchez-Gutierrez, Vicente
    GLASNIK MATEMATICKI, 2020, 55 (01) : 113 - 128
  • [22] EQUIVALENCE OF 2 TRIANGLES
    PELLING, MJ
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (01): : 55 - 56
  • [23] ELEMENTARY EQUIVALENCE OF C-SIGMA-(K) SPACES FOR TOTALLY DISCONNECTED, COMPACT HAUSDORFF-K
    HEINRICH, S
    HENSON, CW
    MOORE, LC
    JOURNAL OF SYMBOLIC LOGIC, 1986, 51 (01) : 135 - 146
  • [24] Construction of Sierpinski Triangles up to the Fifth Order
    Liu Zhongfan
    ACTA PHYSICO-CHIMICA SINICA, 2018, 34 (06) : 551 - 552
  • [25] Construction of Sierpinski Triangles up to the Fifth Order
    Li, Chao
    Zhang, Xue
    Li, Na
    Wang, Yawei
    Yang, Jiajia
    Gu, Gaochen
    Zhang, Yajie
    Hou, Shimin
    Peng, Lianmao
    Wu, Kai
    Nieckarz, Damian
    Szabelski, Pawel
    Tang, Hao
    Wang, Yongfeng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (39) : 13749 - 13753
  • [26] Quantization for uniform distributions on stretched Sierpinski triangles
    Comez, Dogan
    Roychowdhury, Mrinal Kanti
    MONATSHEFTE FUR MATHEMATIK, 2019, 190 (01): : 79 - 100
  • [27] LOCALLY NORMAL SUBGROUPS OF TOTALLY DISCONNECTED GROUPS. PART I: GENERAL THEORY
    Caprace, Pierre-Emmanuel
    Reid, Colin D.
    Willis, George A.
    FORUM OF MATHEMATICS SIGMA, 2017, 5
  • [28] FIBRE SPACES WITH TOTALLY DISCONNECTED FIBRES
    MOSTERT, PS
    DUKE MATHEMATICAL JOURNAL, 1954, 21 (01) : 67 - 74
  • [29] Chern character for totally disconnected groups
    Christian Voigt
    Mathematische Annalen, 2009, 343
  • [30] Totally disconnected locally compact rings
    Jacobson, N
    AMERICAN JOURNAL OF MATHEMATICS, 1936, 58 : 433 - 449